[1] Wahl B, O'Brien KL, Greenbaum A, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000-15. Lancet Glob Health, 2018; 6, e744−57. doi:  10.1016/S2214-109X(18)30247-X
[2] Musher DM, Thorner AR. Community-acquired pneumonia. N Engl J Med, 2014; 371, 1619−28. doi:  10.1056/NEJMra1312885
[3] Advisory Committee on Immunization Practices. Preventing pneumococcal disease among infants and young children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep, 2000; 49, 1−35.
[4] Geno KA, Gilbert GL, Song JY, et al. Pneumococcal capsules and their types: past, present, and future. Clin Microbiol Rev, 2015; 28, 871−99. doi:  10.1128/CMR.00024-15
[5] GPS. Serotypes. https://www.pneumogen.net/gps/serotypes.html. [2022-08-11].
[6] Moore MR, Link-Gelles R, Schaffner W, et al. Effect of use of 13-valent pneumococcal conjugate vaccine in children on invasive pneumococcal disease in children and adults in the USA: analysis of multisite, population-based surveillance. Lancet Infect Dis, 2015; 15, 301−9. doi:  10.1016/S1473-3099(14)71081-3
[7] Ladhani SN, Collins S, Djennad A, et al. Rapid increase in non-vaccine serotypes causing invasive pneumococcal disease in England and Wales, 2000-17: a prospective national observational cohort study. Lancet Infect Dis, 2018; 18, 441−51. doi:  10.1016/S1473-3099(18)30052-5
[8] Pilishvili T, Lexau C, Farley MM, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis, 2010; 201, 32−41. doi:  10.1086/648593
[9] Andrews N, Kent A, AMIN-Chowdhury Z, et al. Effectiveness of the seven-valent and thirteen-valent pneumococcal conjugate vaccines in England: the indirect cohort design, 2006-2018. Vaccine, 2019; 37, 4491−8. doi:  10.1016/j.vaccine.2019.06.071
[10] Kaplan SL, Mason EO Jr, Wald ER, et al. Decrease of invasive pneumococcal infections in children among 8 children's hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics, 2004; 113, 443−9. doi:  10.1542/peds.113.3.443
[11] Levy C, Varon E, Ouldali N, et al. Changes in invasive pneumococcal disease spectrum after 13-valent pneumococcal conjugate vaccine implementation. Clin Infect Dis, 2020; 70, 446−54.
[12] Ouldali N, Varon E, Levy C, et al. Invasive pneumococcal disease incidence in children and adults in France during the pneumococcal conjugate vaccine era: an interrupted time-series analysis of data from a 17-year national prospective surveillance study. Lancet Infect Dis, 2021; 21, 137−47. doi:  10.1016/S1473-3099(20)30165-1
[13] Reasonover A, Zulz T, Bruce MG, et al. The international circumpolar surveillance interlaboratory quality control program for Streptococcus pneumoniae, 1999 to 2008. J Clin Microbiol, 2011; 49, 138−43. doi:  10.1128/JCM.01238-10
[14] Sørensen UB. Typing of pneumococci by using 12 pooled antisera. J Clin Microbiol, 1993; 31, 2097−100. doi:  10.1128/jcm.31.8.2097-2100.1993
[15] Lovgren M, Talbot JA, Brandileone MC, et al. Evolution of an international external quality assurance model to support laboratory investigation of Streptococcus pneumoniae, developed for the SIREVA project in Latin America, from 1993 to 2005. J Clin Microbiol, 2007; 45, 3184−90. doi:  10.1128/JCM.00789-07
[16] Konradsen HB. Validation of serotyping of Streptococcus pneumoniae in Europe. Vaccine, 2005; 23, 1368−73. doi:  10.1016/j.vaccine.2004.09.011
[17] Kuch A, Gołȩbiewska A, Waśko I, et al. Usefulness of Pneumotest-Latex for direct serotyping of Streptococcus pneumoniae Isolates in clinical samples. J Clin Microbiol, 2014; 52, 2647−9. doi:  10.1128/JCM.00451-14
[18] Slotved HC, Kaltoft M, Skovsted IC, et al. Simple, rapid latex agglutination test for serotyping of pneumococci (Pneumotest-Latex). J Clin Microbiol, 2004; 42, 2518−22. doi:  10.1128/JCM.42.6.2518-2522.2004
[19] Pai R, Gertz RE, Beall B. Sequential multiplex PCR approach for determining capsular serotypes of Streptococcus pneumoniae isolates. J Clin Microbiol, 2006; 44, 124−31. doi:  10.1128/JCM.44.1.124-131.2006
[20] Pimenta FC, Roundtree A, Soysal A, et al. Sequential triplex real-time PCR assay for detecting 21 pneumococcal capsular serotypes that account for a high global disease burden. J Clin Microbiol, 2013; 51, 647−52. doi:  10.1128/JCM.02927-12
[21] Velusamy S, Tran T, Mongkolrattanothai T, et al. Expanded sequential quadriplex real-time polymerase chain reaction (PCR) for identifying pneumococcal serotypes, penicillin susceptibility, and resistance markers. Diagn Microbiol Infect Dis, 2020; 97, 115037. doi:  10.1016/j.diagmicrobio.2020.115037
[22] Leung MH, Bryson K, Freystatter K, et al. Sequetyping: serotyping Streptococcus pneumoniae by a single PCR sequencing strategy. J Clin Microbiol, 2012; 50, 2419−27. doi:  10.1128/JCM.06384-11
[23] National Center for Immunization and Respiratory Diseases. Multiplex conventional PCR schemes for pneumococcal serotype deduction. https://www.cdc.gov/streplab/pneumococcus/resources.html. [2022-08-21].
[24] Park D, Kim SH, Bae IK, et al. Evaluation of modified sequential multiplex PCR for Streptococcus pneumoniae serotyping. Jpn J Infect Dis, 2019; 72, 224−7. doi:  10.7883/yoken.JJID.2018.422
[25] Garcia-Garcia S, Perez-Arguello A, Henares D, et al. Rapid identification, capsular typing and molecular characterization of Streptococcus pneumoniae by using whole genome nanopore sequencing. BMC Microbiol, 2020; 20, 347. doi:  10.1186/s12866-020-02032-x
[26] Lyu S, Hu HL, Yang YH, et al. A systematic review about Streptococcus pneumoniae serotype distribution in children in mainland of China before the PCV13 was licensed. Expert Rev Vaccines, 2017; 16, 997−1006. doi:  10.1080/14760584.2017.1360771
[27] Chinese Preventive Medicine Association, Vaccine and Immunology Branch of the Chinese Preventive Medicine Association. Expert consensus on immunoprophylaxis of pneumococcal disease (2020 version). Chin J Prev Med, 2020; 54, 1315−63. (In Chinese
[28] Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS One, 2010; 5, e9490. doi:  10.1371/journal.pone.0009490
[29] Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res, 2016; 44, W242−5. doi:  10.1093/nar/gkw290
[30] Tvedskov ESF, Hovmand N, Benfield T, et al. Pneumococcal carriage among children in low and lower-middle-income countries: A systematic review. Int J Infect Dis, 2022; 115, 1−7. doi:  10.1016/j.ijid.2021.11.021
[31] Pholwat S, Sakai F, Turner P, et al. Development of a TaqMan Array Card for Pneumococcal Serotyping on Isolates and Nasopharyngeal Samples. J Clin Microbiol, 2016; 54, 1842−50. doi:  10.1128/JCM.00613-16
[32] Sakai F, Sonaty G, Watson D, et al. Development and characterization of a synthetic DNA, NUversa, to be used as a standard in quantitative polymerase chain reactions for molecular pneumococcal serotyping. FEMS Microbiol Lett, 2017; 364, fnx173.
[33] Dhoubhadel BG, Yasunami M, Yoshida LM, et al. A novel high-throughput method for molecular serotyping and serotype-specific quantification of Streptococcus pneumoniae using a nanofluidic real-time PCR system. J Med Microbiol, 2014; 63, 528−39. doi:  10.1099/jmm.0.071464-0
[34] Kakiuchi S, Suzuki M, Dhoubhadel BG, et al. Accuracy of High-Throughput Nanofluidic PCR-Based Pneumococcal Serotyping and Quantification Assays Using Sputum Samples for Diagnosing Vaccine Serotype Pneumococcal Pneumonia: Analyses by Composite Diagnostic Standards and Bayesian Latent Class Models. J Clin Microbiol, 2018; 56, e01874−17.
[35] Downs SL, Madhi SA, Van der Merwe L, et al. High-throughput nanofluidic real-time PCR to discriminate Pneumococcal Conjugate Vaccine (PCV)-associated serogroups 6, 18, and 22 to serotypes using modified oligonucleotides. Sci Rep, 2021; 11, 23728. doi:  10.1038/s41598-021-03127-9
[36] Du QQ, Zeng HL, Yuan L, et al. One cross-sectional investigation revealed that non-vaccine serotypes of Streptococcus pneumoniae could be identified more frequently in elderly Chinese people. Vaccine, 2021; 39, 3304−9. doi:  10.1016/j.vaccine.2021.02.053
[37] Bentley SD, Aanensen DM, Mavroidi A, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet, 2006; 2, e31. doi:  10.1371/journal.pgen.0020031
[38] Kong F, Wang W, Tao J, et al. A molecular-capsular-type prediction system for 90 Streptococcus pneumoniae serotypes using partial cpsA-cpsB sequencing and wzy- or wzx-specific PCR. J Med Microbiol, 2005; 54, 351−6. doi:  10.1099/jmm.0.45924-0
[39] Che J, Lu JX, Li WG, et al. A New High-throughput Real-time PCR Assay for the Screening of Multiple Antimicrobial Resistance Genes in Broiler Fecal Samples from China. Biomed Environ Sci, 2019; 32, 881−92.
[40] Huang Q, Chen D, Du C, et al. Highly multiplex PCR assays by coupling the 5'-flap endonuclease activity of Taq DNA polymerase and molecular beacon reporters. Proc Natl Acad Sci U S A. 2022; 119, e2110672119.