[1] Greene NDE, Copp AJ. Neural tube defects. Annu Rev Neurosci, 2014; 37, 221−42. doi:  10.1146/annurev-neuro-062012-170354
[2] Marean A, Graf A, Zhang Y, et al. Folic acid supplementation can adversely affect murine neural tube closure and embryonic survival. Hum Mol Genet, 2011; 20, 3678−83. doi:  10.1093/hmg/ddr289
[3] Stover PJ. One-carbon metabolism-genome interactions in folate-associated pathologies. J Nutr, 2009; 139, 2402−5. doi:  10.3945/jn.109.113670
[4] Copp AJ, De Greene N. Genetics and development of neural tube defects. J Pathol, 2010; 220, 217−30. doi:  10.1002/path.2643
[5] Mason JB, Choi SW, Liu ZH. Other one-carbon micronutrients and age modulate the effects of folate on colorectal carcinogenesis. Nutr Rev, 2008; 66, S15−7. doi:  10.1111/j.1753-4887.2008.00058.x
[6] Zhang T, Xin RL, Gu X, et al. Maternal serum vitamin B12, folate and homocysteine and the risk of neural tube defects in the offspring in a high-risk area of China. Public Health Nutr, 2009; 12, 680−6. doi:  10.1017/S1368980008002735
[7] Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell, 2014; 157, 77−94. doi:  10.1016/j.cell.2014.03.008
[8] Chen LL, Yang L. Regulation of circRNA biogenesis. RNA Biol, 2015; 12, 381−8. doi:  10.1080/15476286.2015.1020271
[9] Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature, 2014; 505, 344−52. doi:  10.1038/nature12986
[10] Chen L, Zhang S, Wu J, et al. circRNA_100290 plays a role in oral cancer by functioning as a sponge of the miR-29 family. Oncogene, 2017; 36, 4551−61. doi:  10.1038/onc.2017.89
[11] Huang MG, Zhong ZY, Lv MX, et al. Comprehensive analysis of differentially expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in bladder carcinoma. Oncotarget, 2016; 7, 47186−200. doi:  10.18632/oncotarget.9706
[12] Li YW, Zheng FX, Xiao XY, et al. CircHIPK3 sponges miR-558 to suppress heparanase expression in bladder cancer cells. EMBO Rep, 2017; 18, 1646−59. doi:  10.15252/embr.201643581
[13] Zhu KP, Ma XL, Zhang CL. LncRNA FENDRR sensitizes doxorubicin-resistance of osteosarcoma cells through down-regulating ABCB1 and ABCC1. Oncotarget, 2017; 8, 71881−93. doi:  10.18632/oncotarget.17985
[14] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013; 495, 333−8. doi:  10.1038/nature11928
[15] Ashwal-Fluss R, Meyer M, Pamudurti NR, et al. circRNA biogenesis competes with pre-mRNA splicing. Mol Cell, 2014; 56, 55−66. doi:  10.1016/j.molcel.2014.08.019
[16] Fragkouli A, Doxakis E. miR-7 and miR-153 protect neurons against MPP+-induced cell death via upregulation of mTOR pathway. Front Cell Neurosci, 2014; 8, 182.
[17] Guo JU, Agarwal V, Guo HL, et al. Expanded identification and characterization of mammalian circular RNAs. Genome Biol, 2014; 15, 409. doi:  10.1186/s13059-014-0409-z
[18] You XT, Vlatkovic I, Babic A, et al. Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci, 2015; 18, 603−10. doi:  10.1038/nn.3975
[19] Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013; 19, 141−57. doi:  10.1261/rna.035667.112
[20] Lin SP, Ye S, Long YM, et al. Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun, 2016; 471, 52−6. doi:  10.1016/j.bbrc.2016.01.183
[21] MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet, 1991; 338, 131−7. doi:  10.1016/0140-6736(91)90133-A
[22] Zhong YJ, Wang YX, Zhang C, et al. Identification of long non-coding RNA and circular RNA in mice after intra-tracheal instillation with fine particulate matter. Chemosphere, 2019; 235, 519−26. doi:  10.1016/j.chemosphere.2019.06.122
[23] Chen XL, Shen YP, Gao YH, et al. Detection of copy number variants reveals association of cilia genes with neural tube defects. PLoS One, 2013; 8, e54492. doi:  10.1371/journal.pone.0054492
[24] Chen XL, Guo J, Lei YP, et al. Global DNA hypomethylation is associated with NTD-affected pregnancy: a case-control study. Birth Defects Res A Clin Mol Teratol, 2010; 88, 575−81. doi:  10.1002/bdra.20670
[25] Wang L, Wang F, Guan J, et al. Relation between hypomethylation of long interspersed nucleotide elements and risk of neural tube defects. Am J Clin Nutr, 2010; 91, 1359−67. doi:  10.3945/ajcn.2009.28858
[26] Pei P, Cheng XY, Yu J, et al. Folate deficiency induced H2A ubiquitination to lead to downregulated expression of genes involved in neural tube defects. Epigenetics Chromatin, 2019; 12, 69. doi:  10.1186/s13072-019-0312-7
[27] Zhu KP, Zhang CL, Ma XL, et al. Analyzing the interactions of mRNAs and ncRNAs to predict competing endogenous RNA networks in osteosarcoma chemo-resistance. Mol Ther, 2019; 27, 518−30. doi:  10.1016/j.ymthe.2019.01.001
[28] Hung FC, Cheng YC, Sun NK, et al. Identification and functional characterization of zebrafish Gas7 gene in early development. J Neurosci Res, 2013; 91, 51−61.
[29] Yang Y, Ren JD, Huang QL, et al. CircRNA expression profiles and the potential role of CircZFP644 in mice with severe acute pancreatitis via sponging miR-21-3p. Front Genet, 2020; 11, 206. doi:  10.3389/fgene.2020.00206
[30] Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011; 146, 353-8.
[31] Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol, 2016; 937, 3−17.
[32] Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell, 2015; 58, 870−85. doi:  10.1016/j.molcel.2015.03.027
[33] Chen W, Schuman E. Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci, 2016; 39, 597−604. doi:  10.1016/j.tins.2016.06.006
[34] Zuo JH, Wang Q, Zhu BZ, et al. Deciphering the roles of circRNAs on chilling injury in tomato. Biochem Biophys Res Commun, 2016; 479, 132−8. doi:  10.1016/j.bbrc.2016.07.032
[35] Liu CY, Zhang CC, Yang J, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget, 2017; 8, 86535−47. doi:  10.18632/oncotarget.21238
[36] Bhupana JN, Huang BT, Liou GG, et al. Gas7 knockout affects PINK1 expression and mitochondrial dynamics in mouse cortical neurons. FASEB BioAdv, 2020; 2, 166−81. doi:  10.1096/fba.2019-00091
[37] Chen YQ, Song DF, Gao JX, et al. Circ-Zfp644 acts as a pro-hypertrophic mediator in an Ang-II induced in vitro myocardial hypertrophy model. Cell Biol Int, 2021; 45, 1260−8. doi:  10.1002/cbin.11569
[38] Zhu HF, Wang JH, Shao YL, et al. Catalpol may improve axonal growth via regulating miR-124 regulated PI3K/AKT/mTOR pathway in neurons after ischemia. Ann Transl Med, 2019; 7, 306. doi:  10.21037/atm.2019.06.25
[39] Wu FQ, Yin CX, Qi JH, et al. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. Hum Cell, 2020; 33, 405−15. doi:  10.1007/s13577-019-00319-4
[40] Ali A, Mahla SB, Reza V, et al. Predicting the possible effect of miR-203a-3p and miR-29a-3p on DNMT3B and GAS7 genes expression. J Integr Bioinform, 2021; 19, 20210016.