[1] Zhao B, Zhang WJ, Xiong YX, et al. Effects of rutin on the oxidative stress, proliferation and osteogenic differentiation of periodontal ligament stem cells in LPS-induced inflammatory environment and the underlying mechanism. J Mol Histol, 2020; 51, 161−71. doi:  10.1007/s10735-020-09866-9
[2] Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol, 2018; 14, 88−98. doi:  10.1038/nrendo.2017.151
[3] Ziukaite L, Slot DE, Van Der Weijden FA. Prevalence of diabetes mellitus in people clinically diagnosed with periodontitis: a systematic review and meta-analysis of epidemiologic studies. J Clin Periodontol, 2018; 45, 650−62. doi:  10.1111/jcpe.12839
[4] Bakari WN, Diallo AM, Danwang C, et al. Long-term effect of non-surgical periodontal treatment on glycaemic control in patients with diabetes with periodontitis: a systematic review and meta-analysis protocol. BMJ Open, 2021; 11, e043250. doi:  10.1136/bmjopen-2020-043250
[5] Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol 2000, 2020; 83, 59−65. doi:  10.1111/prd.12271
[6] Zhao Y, Zhai QL, Liu H, et al. TRIM16 promotes osteogenic differentiation of human periodontal ligament stem cells by modulating CHIP-mediated degradation of RUNX2. Front Cell Dev Biol, 2021; 8, 625105. doi:  10.3389/fcell.2020.625105
[7] Xiong YX, Zhao B, Zhang WJ, et al. Curcumin promotes osteogenic differentiation of periodontal ligament stem cells through the PI3K/AKT/Nrf2 signaling pathway. Iran J Basic Med Sci, 2020; 23, 954−60.
[8] Li M, Li CZ. High glucose improves healing of periodontal wound by inhibiting proliferation and osteogenetic differentiation of human PDL cells. Int Wound J, 2016; 13, 39−43. doi:  10.1111/iwj.12218
[9] Zheng DH, Han ZQ, Wang XX, et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs). Chem Biol Interact, 2019; 305, 40−7. doi:  10.1016/j.cbi.2019.03.007
[10] Kato H, Taguchi Y, Tominaga K, et al. High glucose concentrations suppress the proliferation of human periodontal ligament stem cells and their differentiation into osteoblasts. J Periodontol, 2016; 87, e44−51. doi:  10.1902/jop.2015.150474
[11] Hu SQ, Qiao L, Cheng K. Generation and Manipulation of Exosomes. In: Poss K D, Kühn B. Cardiac Regeneration. Humana. 2021, 295-305.
[12] Li KY, Chen YH, Li A, et al. Exosomes play roles in sequential processes of tumor metastasis. Int J Cancer, 2019; 144, 1486−95. doi:  10.1002/ijc.31774
[13] Nakao Y, Fukuda T, Zhang QZ, et al. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater, 2021; 122, 306−24. doi:  10.1016/j.actbio.2020.12.046
[14] Chamberlain CS, Kink JA, Wildenauer LA, et al. Exosome-educated macrophages and exosomes differentially improve ligament healing. Stem Cells, 2021; 39, 55−61. doi:  10.1002/stem.3291
[15] Ahmadi M, Rezaie J. Ageing and mesenchymal stem cells derived exosomes: molecular insight and challenges. Cell Biochem Funct, 2021; 39, 60−6. doi:  10.1002/cbf.3602
[16] Watanabe Y, Tsuchiya A, Terai S. The development of mesenchymal stem cell therapy in the present, and the perspective of cell-free therapy in the future. Clin Mol Hepatol, 2021; 27, 70−80. doi:  10.3350/cmh.2020.0194
[17] Sun YX, Shi H, Yin SQ, et al. Human mesenchymal stem cell derived exosomes alleviate type 2 diabetes mellitus by reversing peripheral insulin resistance and relieving β-cell destruction. ACS Nano, 2018; 12, 7613−28. doi:  10.1021/acsnano.7b07643
[18] Liao ZL, Yang XZ, Wang W, et al. hucMSCs transplantation promotes locomotor function recovery, reduces apoptosis and inhibits demyelination after SCI in rats. Neuropeptides, 2021; 86, 102125. doi:  10.1016/j.npep.2021.102125
[19] Shang FQ, Liu SY, Ming LG, et al. Human umbilical cord MSCs as new cell sources for promoting periodontal regeneration in inflammatory periodontal defect. Theranostics, 2017; 7, 4370−82. doi:  10.7150/thno.19888
[20] Li WJ, Wang FF, Dong FS, et al. CGF membrane promotes periodontal tissue regeneration mediated by hUCMSCs through upregulating TAZ and osteogenic differentiation genes. Stem Cells Int, 2021; 2021, 6644366.
[21] Yang JY, Chen ZY, Pan DY, et al. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomed, 2020; 15, 5911−26. doi:  10.2147/IJN.S249129
[22] Yang S, Zhu B, Yin P, et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng, 2020; 6, 1590−602. doi:  10.1021/acsbiomaterials.9b01363
[23] Elumalai S, Karunakaran U, Moon JS, et al. High glucose-induced PRDX3 acetylation contributes to glucotoxicity in pancreatic β-cells: Prevention by Teneligliptin. Free Radic Biol Med, 2020; 160, 618−29. doi:  10.1016/j.freeradbiomed.2020.07.030
[24] Kim SY, Lee JY, Park YD, et al. Hesperetin alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of periodontal ligament stem cells. PLoS One, 2013; 8, e67504. doi:  10.1371/journal.pone.0067504
[25] Zheng MM, Zhang FP, Fan WG, et al. Suppression of osteogenic differentiation and mitochondrial function change in human periodontal ligament stem cells by melatonin at physiological levels. PeerJ, 2020; 8, e8663. doi:  10.7717/peerj.8663
[26] Muzurović EM, Mikhailidis DP. Diabetes mellitus and noncardiac atherosclerotic vascular disease-pathogenesis and pharmacological treatment options. J Cardiovasc Pharmacol Ther, 2021; 26, 25−39. doi:  10.1177/1074248420941675
[27] Haw JS, Shah M, Turbow S, et al. Diabetes complications in racial and ethnic minority populations in the USA. Curr Diab Rep, 2021; 21, 2. doi:  10.1007/s11892-020-01369-x
[28] Zhou XD, Zhang WY, Liu XL, et al. Interrelationship between diabetes and periodontitis: role of hyperlipidemia. Arch Oral Biol, 2015; 60, 667−74. doi:  10.1016/j.archoralbio.2014.11.008
[29] Cole JB, Florez JC. Genetics of diabetes mellitus and diabetes complications. Nat Rev Nephrol, 2020; 16, 377−90. doi:  10.1038/s41581-020-0278-5
[30] Liang XT, Ding Y, Zhang YL, et al. Paracrine mechanisms of mesenchymal stem cell-based therapy: current status and perspectives. Cell Transplant, 2014; 23, 1045−59. doi:  10.3727/096368913X667709
[31] Abbaszadeh H, Ghorbani F, Derakhshani M, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles: a novel therapeutic paradigm. J Cell Physiol, 2020; 235, 706−17. doi:  10.1002/jcp.29004
[32] Mohammed E, Khalil E, Sabry D. Effect of adipose-derived stem cells and their exo as adjunctive therapy to nonsurgical periodontal treatment: a histologic and histomorphometric study in rats. Biomolecules, 2018; 8, 167. doi:  10.3390/biom8040167
[33] Chew JRJ, Chuah SJ, Teo KYW, et al. Mesenchymal stem cell exosomes enhance periodontal ligament cell functions and promote periodontal regeneration. Acta Biomater, 2019; 89, 252−64. doi:  10.1016/j.actbio.2019.03.021
[34] Yaghoubi Y, Movassaghpour A, Zamani M, et al. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci, 2019; 233, 116733. doi:  10.1016/j.lfs.2019.116733
[35] Zhai MM, Zhu Y, Yang MY, et al. Human mesenchymal stem cell derived exosomes enhance cell-free bone regeneration by altering their miRNAs profiles. Adv Sci, 2020; 7, 2001334. doi:  10.1002/advs.202001334