[1] Sacco RL, Roth GA, Reddy KS, et al. The heart of 25 by 25: achieving the goal of reducing global and regional premature deaths from cardiovascular diseases and stroke: a modeling study from the american heart association and world heart federation. Circulation, 2016; 133, e674−90.
[2] Liu SW, Li YC, Zeng XY, et al. Burden of cardiovascular diseases in China, 1990-2016: findings from the 2016 global burden of disease study. JAMA Cardiol, 2019; 4, 342−52. doi:  10.1001/jamacardio.2019.0295
[3] Yan YK, Liu JT, Zhao XY, et al. Regional adipose compartments confer different cardiometabolic risk in children and adolescents: the China Child and adolescent cardiovascular health study. Mayo Clin Proc, 2019; 94, 1974−82. doi:  10.1016/j.mayocp.2019.05.026
[4] Dou YL, Jiang Y, Yan YK, et al. Waist-to-height ratio as a screening tool for cardiometabolic risk in children and adolescents: a nationwide cross-sectional study in China. BMJ Open, 2020; 10, e037040. doi:  10.1136/bmjopen-2020-037040
[5] Cornier MA, Després JP, Davis N, et al. Assessing adiposity: a scientific statement from the American Heart Association. Circulation, 2011; 124, 1996−2019. doi:  10.1161/CIR.0b013e318233bc6a
[6] The InterAct Consortium. Long-term risk of incident type 2 diabetes and measures of overall and regional obesity: the EPIC-InterAct case-cohort study. PLoS Med, 2012; 9, e1001230. doi:  10.1371/journal.pmed.1001230
[7] The Decoda Study Group, Nyamdorj R. BMI compared with central obesity indicators in relation to diabetes and hypertension in Asians. Obesity, 2008; 16, 1622−35. doi:  10.1038/oby.2008.73
[8] Yang XL, Ouyang YF, Zhang XF, et al. Waist circumference of the elderly over 65 years old in China increased gradually from 1993 to 2015: a cohort study. Biomed Environ Sci, 2022; 35, 604−12.
[9] Wang AX, Li ZX, Zhou Y, et al. Hypertriglyceridemic waist phenotype and risk of cardiovascular diseases in China: results from the Kailuan Study. Int J Cardiol, 2014; 174, 106−9. doi:  10.1016/j.ijcard.2014.03.177
[10] Després JP, Lemieux I, Bergeron J, et al. Abdominal obesity and the metabolic syndrome: contribution to global cardiometabolic risk. Arterioscler Thromb Vasc Biol, 2008; 28, 1039−49. doi:  10.1161/ATVBAHA.107.159228
[11] Nicklas BJ, Penninx BWJH, Ryan AS, et al. Visceral adipose tissue cutoffs associated with metabolic risk factors for coronary heart disease in women. Diabetes Care, 2003; 26, 1413−20. doi:  10.2337/diacare.26.5.1413
[12] Sam S, Haffner S, Davidson MH, et al. Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes, 2008; 57, 2022−7. doi:  10.2337/db08-0157
[13] Sironi AM, Gastaldelli A, Mari A, et al. Visceral fat in hypertension: influence on insulin resistance and beta-cell function. Hypertension, 2004; 44, 127−33. doi:  10.1161/01.HYP.0000137982.10191.0a
[14] Arsenault BJ, Lachance D, Lemieux I, et al. Visceral adipose tissue accumulation, cardiorespiratory fitness, and features of the metabolic syndrome. Arch Intern Med, 2007; 167, 1518−25. doi:  10.1001/archinte.167.14.1518
[15] Ebbert JO, Jensen MD. Fat depots, free fatty acids, and dyslipidemia. Nutrients, 2013; 5, 498−508. doi:  10.3390/nu5020498
[16] Bailey DP, Savory LA, Denton SJ, et al. The hypertriglyceridemic waist, waist-to-height ratio, and cardiometabolic risk. J Pediatr, 2013; 162, 746−52. doi:  10.1016/j.jpeds.2012.09.051
[17] Hobkirk JP, King RF, Gately P, et al. The predictive ability of triglycerides and waist (hypertriglyceridemic waist) in assessing metabolic triad change in obese children and adolescents. Metab Syndr Relat Disord, 2013; 11, 336−42. doi:  10.1089/met.2012.0152
[18] Ma CM, Wang R, Liu XL, et al. The relationship between hypertriglyceridemic waist phenotype and early diabetic nephropathy in type 2 diabetes. Cardiorenal Med, 2017; 7, 295−300. doi:  10.1159/000477828
[19] Lam BCC, Koh GCH, Chen C, et al. Comparison of Body Mass Index (BMI), Body Adiposity Index (BAI), Waist Circumference (WC), Waist-To-Hip Ratio (WHR) and Waist-To-Height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS One, 2015; 10, e0122985. doi:  10.1371/journal.pone.0122985
[20] Yang YD, Dong B, Zou ZY, et al. Association between Vegetable consumption and blood pressure, stratified by BMI, among Chinese adolescents aged 13-17 years: a national cross-sectional study. Nutrients, 2018; 10, 451. doi:  10.3390/nu10040451
[21] Chen YJ, Ma L, Ma YH, et al. A national school-based health lifestyles interventions among Chinese children and adolescents against obesity: rationale, design and methodology of a randomized controlled trial in China. BMC Public Health, 2015; 15, 210. doi:  10.1186/s12889-015-1516-9
[22] Alberti KGMM, Eckel RH, Grundy SM, et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 2009; 120, 1640−5. doi:  10.1161/CIRCULATIONAHA.109.192644
[23] US Department of Health and Human Services, Public Health Service, National Institutes of Health, et al. National Cholesterol Education Program (NCEP): highlights of the report of the Expert Panel on Blood Cholesterol Levels in Children and Adolescents. Pediatrics, 1992; 89, 495-501.
[24] Flynn JT, Kaelber DC, Baker-Smith CM, et al. Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics, 2017; 140, e20171904. doi:  10.1542/peds.2017-1904
[25] Jennings A, Cassidy A, Van Sluijs EMF, et al. Associations between eating frequency, adiposity, diet, and activity in 9-10 year old healthy-weight and centrally obese children. Obesity, 2012; 20, 1462−8. doi:  10.1038/oby.2012.72
[26] McCarthy HD, Jarrett KV, Crawley HF. The development of waist circumference percentiles in British children aged 5.0-16.9 y. Eur J Clin Nutr, 2001; 55, 902−7. doi:  10.1038/sj.ejcn.1601240
[27] Lv RR, Xu Z, Sun Y, et al. Normal waist-hip ratio of children and adolescents in Beijing. Chin J Sch Health, 2012; 33, 750−1. (In Chinese
[28] Ford ES, Ajani UA, Mokdad AH. The metabolic syndrome and concentrations of C-reactive protein among U. S. youth. Diabetes Care, 2005; 28, 878−81. doi:  10.2337/diacare.28.4.878
[29] Camhi SM, Katzmarzyk PT. Prevalence of cardiometabolic risk factor clustering and body mass index in adolescents. J Pediatr, 2011; 159, 303−7. doi:  10.1016/j.jpeds.2011.01.059
[30] Dong YH, Zou ZY, Wang HJ, et al. National school-based health lifestyles intervention in Chinese Children and adolescents on obesity and hypertension. Front Pediatr, 2021; 9, 615283. doi:  10.3389/fped.2021.615283
[31] Sobczak AIS, Blindauer CA, Stewart AJ. Changes in plasma free fatty acids associated with type-2 diabetes. Nutrients, 2019; 11, 2022. doi:  10.3390/nu11092022
[32] Hirano T. Pathophysiology of diabetic dyslipidemia. J Atheroscler Thromb, 2018; 25, 771−82. doi:  10.5551/jat.RV17023
[33] Zhang MH, Cao YX, Wu LG, et al. Association of plasma free fatty acids levels with the presence and severity of coronary and carotid atherosclerotic plaque in patients with type 2 diabetes mellitus. BMC Endocr Disord, 2020; 20, 156. doi:  10.1186/s12902-020-00636-y
[34] Zhang FL, Ren JX, Zhang P, et al. Strong Association of Waist Circumference (WC), Body Mass Index (BMI), Waist-to-Height Ratio (WHtR), and Waist-to-Hip Ratio (WHR) with diabetes: a population-based cross-sectional study in Jilin Province, China. J Diabetes Res, 2021; 2021, 8812431.
[35] Gamboa Delgado EM, Domínguez Urrego CL, Quintero Lesmes DC. Waist-to-height ratio and its relation with cardiometabolic risk factors in children from Bucaramanga, Colombia. Nutr Hosp, 2017; 34, 1338−44.
[36] Yan YK, Cheng H, Zhao XE, et al. Change in the prevalence of obesity phenotypes and cardiometabolic disorders among children aged 6-17 in Beijing during 2004-2013. Chin J Prev Med, 2016; 50, 34−9. (In Chinese
[37] Jiang Y, Dou YL, Chen HY, et al. Performance of waist-to-height ratio as a screening tool for identifying cardiometabolic risk in children: a meta-analysis. Diabetol Metab Syndr, 2021; 13, 66. doi:  10.1186/s13098-021-00688-7
[38] Cabral Rocha AL, Feliciano Pereira P, Cristine Pessoa M, et al. Hypertriglyceridemic waist phenotype and cardiometabolic alterations in brazilian adults. Nutr Hosp, 2015; 32, 1099−106.
[39] Kelishadi R, Jamshidi F, Qorbani M, et al. Association of hypertriglyceridemic-waist phenotype with liver enzymes and cardiometabolic risk factors in adolescents: the CASPIAN-III study. J Pediatr, 2016; 92, 512−20. doi:  10.1016/j.jped.2015.12.009
[40] de Farias Costa PR, Assis AMO, de Magalhães Cunha C, et al. Hypertriglyceridemic waist phenotype and changes in the fasting glycemia and blood pressure in children and adolescents over one-year follow-up period. Arq Bras Cardiol, 2017; 109, 47−53.
[41] Ma CM, Liu XL, Yin FZ, et al. Hypertriglyceridemic waist-to-height ratio phenotype: association with atherogenic lipid profile in Han adolescents. Eur J Pediatr, 2015; 174, 1175−81. doi:  10.1007/s00431-015-2522-8
[42] Yusuf S, Hawken S, Ôunpuu S, et al. Obesity and the risk of myocardial infarction in 27 000 participants from 52 countries: a case-control study. Lancet, 2005; 366, 1640−9. doi:  10.1016/S0140-6736(05)67663-5
[43] Emdin CA, Khera AV, Natarajan P, et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA, 2017; 317, 626−34. doi:  10.1001/jama.2016.21042
[44] Szabo L, McCracken C, Cooper J, et al. The role of obesity-related cardiovascular remodelling in mediating incident cardiovascular outcomes: a population-based observational study. Eur Heart J Cardiovasc Imaging, 2023; 24, 921−9. doi:  10.1093/ehjci/jeac270
[45] Lemieux I, Després JP. Metabolic syndrome: past, present and future. Nutrients, 2020; 12, 3501. doi:  10.3390/nu12113501
[46] Zhu YY, Zheng RZ, Wang GX, et al. Inverted U-shaped associations between glycemic indices and serum uric acid levels in the general chinese population: findings from the China cardiometabolic disease and cancer cohort (4C) study. Biomed Environ Sci, 2021; 34, 9−18.
[47] Sanchez-Lozada LG, Rodriguez-Iturbe B, Kelley EE, et al. Uric acid and hypertension: an update with recommendations. Am J Hypertens, 2020; 33, 583−94. doi:  10.1093/ajh/hpaa044
[48] Mukhopadhyay P, Ghosh S, Pandit K, et al. Uric acid and its correlation with various metabolic parameters: a population-based study. Indian J Endocrinol Metab, 2019; 23, 134−9. doi:  10.4103/ijem.IJEM_18_19
[49] Wu L, He Y, Jiang B, et al. Association between serum uric acid level and hypertension in a Chinese elderly rural population. Clin Exp Hypertens, 2017; 39, 505−12. doi:  10.1080/10641963.2016.1259325
[50] Dong JK, Yang HJ, Zhang YP, et al. Triglyceride-glucose index is a predictive index of hyperuricemia events in elderly patients with hypertension: a cross-sectional study. Clin Exp Hypertens, 2022; 44, 34−9. doi:  10.1080/10641963.2021.1984499