[1] Schlapbach LJ, Kissoon N, Alhawsawi A, et al. World Sepsis Day: a global agenda to target a leading cause of morbidity and mortality. Am J Physiol Lung Cell Mol Physiol, 2020; 319, L518−22. doi:  10.1152/ajplung.00369.2020
[2] Balayan S, Chauhan N, Chandra R, et al. Recent advances in developing biosensing based platforms for neonatal sepsis. Biosens Bioelectron, 2020; 169, 112552. doi:  10.1016/j.bios.2020.112552
[3] McNamara JF, Harris PNA, Chatfield MD, et al. Long term sepsis readmission, mortality and cause of death following Gram negative bloodstream infection: a propensity matched observational linkage study. Int J Infect Dis, 2022; 114, 34−44. doi:  10.1016/j.ijid.2021.10.047
[4] Chousalkar K, Gast R, Martelli F, et al. Review of egg-related salmonellosis and reduction strategies in United States, Australia, United Kingdom and New Zealand. Crit Rev Microbiol, 2018; 44, 290−303. doi:  10.1080/1040841X.2017.1368998
[5] Chroni A, Rallidis L, Vassou D, et al. Identification and characterization of a rare variant in apolipoprotein A-IV, p. (V336M), and evaluation of HDL functionality in a Greek cohort with extreme HDL cholesterol levels. Arch Biochem Biophys, 2020; 696, 108655. doi:  10.1016/j.abb.2020.108655
[6] Akkoyun DÇ, Akyuz A, Doğan M, et al. Quercetin inhibits heart injury in lipopolysaccharide-induced endotoxemic model by suppressing the effects of reactive oxygen species. Anal Quant Cytopathol Histopathol, 2016; 38, 183−8.
[7] Wei XQ, Meng XL, Yuan YX, et al. Quercetin exerts cardiovascular protective effects in LPS-induced dysfunction in vivo by regulating inflammatory cytokine expression, NF-κB phosphorylation, and caspase activity. Mol Cell Biochem, 2018; 446, 43−52. doi:  10.1007/s11010-018-3271-6
[8] Liu G, Wu KJ, Zhang L, et al. Metformin attenuated endotoxin-induced acute myocarditis via activating AMPK. Int Immunopharmacol, 2017; 47, 166−72. doi:  10.1016/j.intimp.2017.04.002
[9] Panaro MA, Acquafredda A, Cavallo P, et al. Inflammatory responses in embryonal cardiomyocytes exposed to LPS challenge: an in vitro model of deciphering the effects of LPS on the heart. Curr Pharm Des, 2010; 16, 754−65. doi:  10.2174/138161210790883516
[10] Shen L, Weber CR, Turner JR. The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol, 2008; 181, 683−95. doi:  10.1083/jcb.200711165
[11] Mokhtari B, Badalzadeh R. The potentials of distinct functions of autophagy to be targeted for attenuation of myocardial ischemia/reperfusion injury in preclinical studies: an up-to-date review. J Physiol Biochem, 2021; 77, 377−404. doi:  10.1007/s13105-021-00824-x
[12] Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol, 2002; 17, 897−908.
[13] Zhang C, Syed TW, Liu RJ, et al. Role of endoplasmic reticulum stress, autophagy, and inflammation in cardiovascular disease. Front Cardiovasc Med, 2017; 4, 29. doi:  10.3389/fcvm.2017.00029
[14] Mechesso AF, Quah YX, Park SC. Ginsenoside Rg3 reduces the adhesion, invasion, and intracellular survival of Salmonella enterica serovar Typhimurium. J Ginseng Res, 2021; 45, 75−85. doi:  10.1016/j.jgr.2019.09.002
[15] Chiu B, Jantuan E, Shen F, et al. Autophagy-inflammasome interplay in heart failure: a systematic review on basics, pathways, and therapeutic perspectives. Ann Clin Lab Sci, 2017; 47, 243−52.
[16] Ashrafizadeh M, Tavakol S, Ahmadi Z, et al. Therapeutic effects of kaempferol affecting autophagy and endoplasmic reticulum stress. Phytother Res, 2020; 34, 911−23. doi:  10.1002/ptr.6577
[17] Mohammadinejad R, Ahmadi Z, Tavakol S, et al. Berberine as a potential autophagy modulator. J Cell Physiol, 2019; 234, 14914−26. doi:  10.1002/jcp.28325
[18] Nagata S, Nakano H. Apoptotic and non-apoptotic cell death. Springer. 2017.
[19] Mughal W, Dhingra R, Kirshenbaum LA. Striking a balance: autophagy, apoptosis, and necrosis in a normal and failing heart. Curr Hypertens Rep, 2012; 14, 540−7. doi:  10.1007/s11906-012-0304-5
[20] Cong L, Bai YP, Guo ZG. The crosstalk among autophagy, apoptosis, and pyroptosis in cardiovascular disease. Front Cardiovasc Med, 2022; 9, 997469. doi:  10.3389/fcvm.2022.997469
[21] Dong Y, Chen HW, Gao JL, et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol, 2019; 136, 27−41. doi:  10.1016/j.yjmcc.2019.09.001
[22] Zheng XT, Chen WW, Gong FC, et al. The role and mechanism of pyroptosis and potential therapeutic targets in sepsis: a review. Front Immunol, 2021; 12, 711939. doi:  10.3389/fimmu.2021.711939
[23] Wei SQ, Feng M, Zhang SD. Molecular characteristics of cell pyroptosis and its inhibitors: a review of activation, regulation, and inhibitors. Int J Mol Sci, 2022; 23, 16115. doi:  10.3390/ijms232416115
[24] Jia Y, Li DZ, Yu J, et al. Potential diabetic cardiomyopathy therapies targeting pyroptosis: a mini review. Front Cardiovasc Med, 2022; 9, 985020. doi:  10.3389/fcvm.2022.985020
[25] Zhang P, Zang MR, Sang ZZ, et al. Vitamin C alleviates LPS-induced myocardial injury by inhibiting pyroptosis via the ROS-AKT/mTOR signalling pathway. BMC Cardiovasc Disord, 2022; 22, 561. doi:  10.1186/s12872-022-03014-9
[26] Li Q, Zhang MM, Zhao Y, et al. Irisin protects against LPS-stressed cardiac damage through inhibiting inflammation, apoptosis, and pyroptosis. SHOCK, 2021; 56, 1009−18. doi:  10.1097/SHK.0000000000001775
[27] Ouyang CH, You JY, Xie ZL. The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol, 2014; 71, 71−80. doi:  10.1016/j.yjmcc.2013.10.014
[28] Yu JH, Hu GL, Cao HB, et al. Quercetin ameliorates lipopolysaccharide-induced duodenal inflammation through modulating autophagy, programmed cell death and intestinal mucosal barrier function in chicken embryos. Animals, 2022; 12, 3524. doi:  10.3390/ani12243524
[29] Afrin S, Gasparrini M, Forbes-Hernandez TY, et al. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 1: Enhancement of cellular viability, regulation of cellular apoptosis and improvement of mitochondrial functionality. Food Chem Toxicol, 2018; 121, 203−13. doi:  10.1016/j.fct.2018.09.001
[30] Häkkinen SH, Kärenlampi SO, Heinonen IM, et al. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem, 1999; 47, 2274−9. doi:  10.1021/jf9811065
[31] Gasparrini M, Afrin S, Forbes-Hernández TY, et al. Protective effects of Manuka honey on LPS-treated RAW 264.7 macrophages. Part 2: Control of oxidative stress induced damage, increase of antioxidant enzyme activities and attenuation of inflammation. Food Chem Toxicol, 2018; 120, 578−87. doi:  10.1016/j.fct.2018.08.001
[32] Gasparrini M, Forbes-Hernandez TY, Giampieri F, et al. Anti-inflammatory effect of strawberry extract against LPS-induced stress in RAW 264.7 macrophages. Food Chem Toxicol, 2017; 102, 1−10. doi:  10.1016/j.fct.2017.01.018
[33] Ulusoy HG, Sanlier N. A minireview of quercetin: from its metabolism to possible mechanisms of its biological activities. Crit Rev Food Sci Nutr, 2020; 60, 3290−303. doi:  10.1080/10408398.2019.1683810
[34] Lotfi N, Yousefi Z, Golabi M, et al. The potential anti-cancer effects of quercetin on blood, prostate and lung cancers: an update. Front Immunol, 2023; 14, 1077531. doi:  10.3389/fimmu.2023.1077531
[35] Paskeh MDA, Entezari M, Clark C, et al. Targeted regulation of autophagy using nanoparticles: new insight into cancer therapy. Biochim Biophys Acta Mol Basis Dis, 2022; 1868, 166326. doi:  10.1016/j.bbadis.2021.166326
[36] Ashrafizadeh M, Paskeh MDA, Mirzaei S, et al. Targeting autophagy in prostate cancer: preclinical and clinical evidence for therapeutic response. J Exp Clin Cancer Res, 2022; 41, 105. doi:  10.1186/s13046-022-02293-6
[37] Liu J, Wang SC, Zhang QJ, et al. Selenomethionine alleviates LPS-induced chicken myocardial inflammation by regulating the miR-128-3p-p38 MAPK axis and oxidative stress. Metallomics, 2020; 12, 54−64. doi:  10.1039/c9mt00216b
[38] Frantz S, Kobzik L, Kim YD, et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest, 1999; 104, 271−80. doi:  10.1172/JCI6709
[39] Zanoni I, Bodio C, Broggi A, et al. Similarities and differences of innate immune responses elicited by smooth and rough LPS. Immunol Lett, 2012; 142, 41−7. doi:  10.1016/j.imlet.2011.12.002
[40] Kogut M, He HQ, Kaiser P. Lipopolysaccharide binding protein/CD14/TLR4-dependent recognition of salmonella LPS induces the functional activation of chicken heterophils and up-regulation of pro-inflammatory cytokine and chemokine gene expression in these cells. Anim Biotechnol, 2005; 16, 165−81. doi:  10.1080/10495390500264896
[41] Panaro MA, Cianciulli A, Gagliardi N, et al. CD14 major role during lipopolysaccharide-induced inflammation in chick embryo cardiomyocytes. FEMS Immunol Med Microbiol, 2008; 53, 35−45. doi:  10.1111/j.1574-695X.2008.00397.x
[42] Rossetti C, Peri F. The role of toll-like receptor 4 in infectious and non Infectious Inflammation. Springer. 2021.
[43] De Vicente LG, Muñoz VR, Pinto AP, et al. TLR4 deletion increases basal energy expenditure and attenuates heart apoptosis and ER stress but mitigates the training-induced cardiac function and performance improvement. Life Sci, 2021; 285, 119988. doi:  10.1016/j.lfs.2021.119988
[44] Karnati HK, Pasupuleti SR, Kandi R, et al. TLR-4 signalling pathway: MyD88 independent pathway up-regulation in chicken breeds upon LPS treatment. Vet Res Commun, 2015; 39, 73−8. doi:  10.1007/s11259-014-9621-2
[45] Wang XP, Guo DQ, Li WL, et al. Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure. J Cell Mol Med, 2020; 24, 10677−92. doi:  10.1111/jcmm.15688
[46] Zhang LL, Zhang C, Peng JP. Application of nanopore sequencing technology in the clinical diagnosis of infectious diseases. Biomed Environ Sci, 2022; 35, 381−92.
[47] Kogut MH, Rothwell L, Kaiser P. Priming by recombinant chicken interleukin-2 induces selective expression of IL-8 and IL-18 mRNA in chicken heterophils during receptor-mediated phagocytosis of opsonized and nonopsonized Salmonella enterica serovar enteritidis. Mol Immunol, 2003; 40, 603−10. doi:  10.1016/j.molimm.2003.08.002
[48] Akseh S, Nemati M, Zamani-Gharehchamani E, et al. Amnion membrane proteins attenuate LPS-induced inflammation and apoptosis by inhibiting TLR4/NF-κB pathway and repressing MicroRNA-155 in rat H9c2 cells. Immunopharmacol Immunotoxicol, 2021; 43, 487−94. doi:  10.1080/08923973.2021.1945086
[49] Handley SA, Miller VL. General and specific host responses to bacterial infection in Peyer's patches: a role for stromelysin-1 (matrix metalloproteinase-3) during Salmonella enterica infection. Mol Microbiol, 2007; 64, 94−110. doi:  10.1111/j.1365-2958.2007.05635.x
[50] Lalu MM, Csont T, Schulz R. Matrix metalloproteinase activities are altered in the heart and plasma during endotoxemia. Crit Care Med, 2004; 32, 1332−7. doi:  10.1097/01.CCM.0000127778.16609.EC
[51] Iriti M, Kubina R, Cochis A, et al. Rutin, a quercetin glycoside, restores chemosensitivity in human breast cancer cells. Phytother Res, 2017; 31, 1529−38. doi:  10.1002/ptr.5878
[52] Liu XC, Zheng L, Liu M, et al. Protective effects of rutin on lipopolysaccharide-induced heart injury in mice. J Toxicol Sci, 2018; 43, 329−37. doi:  10.2131/jts.43.329
[53] Shu J, Gu YW, Jin L, et al. Matrix metalloproteinase 3 regulates angiotensin II-induced myocardial fibrosis cell viability, migration and apoptosis. Mol Med Rep, 2021; 23, 151.
[54] Collins MM, Ryan AK. Manipulating claudin expression in avian embryos. Methods Mol Biol, 2011; 762, 195−212.
[55] Simard A, Di Pietro E, Ryan AK. Gene expression pattern of Claudin-1 during chick embryogenesis. Gene Expr Patterns, 2005; 5, 553−60. doi:  10.1016/j.modgep.2004.10.009
[56] Simard A, Di Pietro E, Young CR, et al. Alterations in heart looping induced by overexpression of the tight junction protein Claudin-1 are dependent on its C-terminal cytoplasmic tail. Mech Dev, 2006; 123, 210−27. doi:  10.1016/j.mod.2005.12.004
[57] Kostin S. Zonula occludens-1 and connexin 43 expression in the failing human heart. J Cell Mol Med, 2007; 11, 892−5. doi:  10.1111/j.1582-4934.2007.00063.x
[58] El Refaey M, Coles S, Musa H, et al. Altered expression of zonula occludens-1 affects cardiac Na+ channels and increases susceptibility to ventricular arrhythmias. Cells, 2022; 11, 665. doi:  10.3390/cells11040665
[59] Zhang JL, Vincent KP, Peter AK, et al. Cardiomyocyte expression of ZO-1 is essential for normal atrioventricular conduction but does not alter ventricular function. Circ Res, 2020; 127, 284−97. doi:  10.1161/CIRCRESAHA.119.315539
[60] Chen Y, Liu YQ, Dorn II GW. Mitochondrial fusion is essential for organelle function and cardiac homeostasis. Circ Res, 2011; 109, 1327−31. doi:  10.1161/CIRCRESAHA.111.258723
[61] Yu WC, Mei X, Zhang Q, et al. Yap overexpression attenuates septic cardiomyopathy by inhibiting DRP1-related mitochondrial fission and activating the ERK signaling pathway. J Recept Signal Transduct, 2019; 39, 175−86. doi:  10.1080/10799893.2019.1641822
[62] Bullon P, Cordero MD, Quiles JL, et al. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lipopolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic Biol Med, 2011; 50, 1336−43. doi:  10.1016/j.freeradbiomed.2011.02.018
[63] Xu T, Dong Q, Luo YX, et al. Porphyromonas gingivalis infection promotes mitochondrial dysfunction through Drp1-dependent mitochondrial fission in endothelial cells. Int J Oral Sci, 2021; 13, 28. doi:  10.1038/s41368-021-00134-4
[64] Tong MM, Zablocki D, Sadoshima J. The role of Drp1 in mitophagy and cell death in the heart. J Mol Cell Cardiol, 2020; 142, 138−45. doi:  10.1016/j.yjmcc.2020.04.015
[65] Zhao QC, Yan S, Lu J, et al. Drp1 regulates transcription of ribosomal protein genes in embryonic hearts. J Cell Sci, 2022; 135, jcs258956. doi:  10.1242/jcs.258956
[66] Sharp WW, Fang YH, Han M, et al. Dynamin-related protein 1 (Drp1)-mediated diastolic dysfunction in myocardial ischemia-reperfusion injury: therapeutic benefits of Drp1 inhibition to reduce mitochondrial fission. FASEB J, 2014; 28, 316−26. doi:  10.1096/fj.12-226225
[67] Ikeda Y, Shirakabe A, Maejima Y, et al. Endogenous Drp1 mediates mitochondrial autophagy and protects the heart against energy stress. Circ Res, 2015; 116, 264−78. doi:  10.1161/CIRCRESAHA.116.303356
[68] Ren J, Sowers JR, Zhang YM. Autophagy and cardiometabolic diseases. Academic Press. 2018.
[69] Chang X, He YH, Wang L, et al. Puerarin alleviates LPS-induced H9C2 cell injury by inducing mitochondrial autophagy. J Cardiovasc Pharmacol, 2022; 80, 600−8.
[70] Ben-Shaul V, Lomnitski L, Nyska A, et al. The effect of natural antioxidants, NAO and apocynin, on oxidative stress in the rat heart following LPS challenge. Toxicol Lett, 2001; 123, 1−10.
[71] Sul OJ, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules, 2021; 26, 6949. doi:  10.3390/molecules26226949
[72] Lushnikova EL, Nepomnyashchikh LM, Pichigin VI, et al. Expression of mRNA of apolipoprotein E, apolipoprotein A-IV, and matricellular proteins in the myocardium and intensity of fibroplastic processes during experimental hypercholesterolemia. Bull Exp Biol Med, 2013; 156, 271−5. doi:  10.1007/s10517-013-2328-5
[73] Zhang WQ, Liu XH, Zhou JT, et al. Apolipoprotein A-IV restrains fat accumulation in skeletal and myocardial muscles by inhibiting lipogenesis and activating PI3K-AKT signalling. Arch Physiol Biochem, 2023, 1-11.
[74] Wang Y, Zhang ZZ, Wu Y, et al. Quercetin postconditioning attenuates myocardial ischemia/reperfusion injury in rats through the PI3K/Akt pathway. Braz J Med Biol Res, 2013; 46, 861−7. doi:  10.1590/1414-431X20133036
[75] Ravindranath TM, Goto M, Bakr S, et al. LPS-induced changes in myocardial markers in neonatal rats. Biol Neonate, 2003; 84, 319−24. doi:  10.1159/000073641
[76] Lado-Abeal J, Martinez-Sánchez N, Cocho JA, et al. Lipopolysaccharide (LPS)-induced septic shock causes profound changes in myocardial energy metabolites in pigs. Metabolomics, 2018; 14, 131. doi:  10.1007/s11306-018-1433-x
[77] Yamaguchi O. Autophagy in the Heart. Circ J, 2019; 83, 697−704. doi:  10.1253/circj.CJ-18-1065
[78] Drosatos K, Pollak NM, Pol CJ, et al. Cardiac myocyte KLF5 regulates Ppara expression and cardiac function. Circ Res, 2016; 118, 241−53. doi:  10.1161/CIRCRESAHA.115.306383
[79] Kumari R, Ray AG, Mukherjee D, et al. Downregulation of PTEN promotes autophagy via concurrent reduction in apoptosis in cardiac hypertrophy in PPAR α-/- mice. Front Cardiovasc Med, 2022; 9, 798639. doi:  10.3389/fcvm.2022.798639
[80] Saikia R, Joseph J. AMPK: a key regulator of energy stress and calcium-induced autophagy. J Mol Med, 2021; 99, 1539−51. doi:  10.1007/s00109-021-02125-8
[81] Eisenberg-Lerner A, Bialik S, Simon HU, et al. Life and death partners: apoptosis, autophagy and the cross-talk between them. Cell Death Differ, 2009; 16, 966−75. doi:  10.1038/cdd.2009.33
[82] Kajstura J, Mansukhani M, Cheng W, et al. Programmed cell death and expression of the protooncogene bcl-2 in myocytes during postnatal maturation of the heart. Exp Cell Res, 1995; 219, 110−21. doi:  10.1006/excr.1995.1211
[83] Grzegorzewska AK, Hrabia A, Paczoska-Eliasiewicz HE. Localization of apoptotic and proliferating cells and mRNA expression of caspases and Bcl-2 in gonads of chicken embryos. Acta Histochem, 2014; 116, 795−802. doi:  10.1016/j.acthis.2014.01.012
[84] Sun YX, Cai Y, Qian SH, et al. Beclin-1 improves mitochondria-associated membranes in the heart during endotoxemia. FASEB Bioadv, 2021; 3, 123−35. doi:  10.1096/fba.2020-00039
[85] Sun YX, Yao X, Zhang QJ, et al. Beclin-1-dependent autophagy protects the heart during sepsis. Circulation, 2018; 138, 2247−62. doi:  10.1161/CIRCULATIONAHA.117.032821
[86] Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol, 2016; 95, 19−25. doi:  10.1016/j.yjmcc.2015.10.032
[87] Haq S, Grondin J, Banskota S, et al. Autophagy: roles in intestinal mucosal homeostasis and inflammation. J Biomed Sci, 2019; 26, 19. doi:  10.1186/s12929-019-0512-2
[88] Liao ZH, Dai ZK, Cai CY, et al. Knockout of Atg5 inhibits proliferation and promotes apoptosis of DF-1 cells. In Vitro Cell Dev Biol Anim, 2019; 55, 341−8. doi:  10.1007/s11626-019-00342-7
[89] Zhu CM, Zhang SY, Liu D, et al. A novel gene prognostic signature based on differential DNA methylation in breast cancer. Front Genet, 2021; 12, 742578. doi:  10.3389/fgene.2021.742578
[90] Liu L, Chen ML, Lin K, et al. Inhibiting caspase-12 mediated inflammasome activation protects against oxygen-glucose deprivation injury in primary astrocytes. Int J Med Sci, 2020; 17, 1936−45. doi:  10.7150/ijms.44330
[91] Nakagawa T, Zhu H, Morishima N, et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature, 2000; 403, 98−103. doi:  10.1038/47513
[92] Morishima N, Nakanishi K, Takenouchi H, et al. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J Biol Chem, 2002; 277, 34287−94. doi:  10.1074/jbc.M204973200
[93] Salvamoser R, Brinkmann K, O'Reilly LA, et al. Characterisation of mice lacking the inflammatory caspases-1/11/12 reveals no contribution of caspase-12 to cell death and sepsis. Cell Death Differ, 2019; 26, 1124−37. doi:  10.1038/s41418-018-0188-2
[94] Liu HH, Wang SJ, Gong LJ, et al. SIRT6 ameliorates LPS-induced apoptosis and tight junction injury in ARDS through the ERK1/2 pathway and autophagy. Int J Med Sci, 2023; 20, 581−94. doi:  10.7150/ijms.80920
[95] Wang JY, Luan YY, Fan EK, et al. TBK1/IKKε negatively regulate lps-induced neutrophil necroptosis and lung inflammation. SHOCK, 2021; 55, 338−48. doi:  10.1097/SHK.0000000000001632
[96] Liu YL, Hsu CC, Huang HJ, et al. Gallic acid attenuated LPS-induced neuroinflammation: protein aggregation and necroptosis. Mol Neurobiol, 2020; 57, 96−104. doi:  10.1007/s12035-019-01759-7
[97] Wang YC, Jiang L, Li YF, et al. Excessive selenium supplementation induced oxidative stress and endoplasmic reticulum stress in chicken spleen. Biol Trace Elem Res, 2016; 172, 481−7. doi:  10.1007/s12011-015-0596-9