[1] Järup L, Åkesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol, 2009; 238, 201−8. doi:  10.1016/j.taap.2009.04.020
[2] Munisamy R, Ismail SNS, Praveena SM. Cadmium exposure via food crops: a case study of intensive farming area. Am J Appl Sci, 2013; 10, 1252−62. doi:  10.3844/ajassp.2013.1252.1262
[3] Faroon O, Ashizawa A, Wright S, et al. Toxicological profile for cadmium. Agency for Toxic Substances and Disease Registry (US). 2012, 1-487.
[4] Olsson IM, Bensryd I, Lundh T, et al. Cadmium in blood and urine-impact of sex, age, dietary intake, iron status, and former smoking-association of renal effects. Environ Health Perspect, 2002; 110, 1185−90. doi:  10.1289/ehp.021101185
[5] Satarug S, Garrett SH, Sens MA, et al. Cadmium, environmental exposure, and health outcomes. Environ Health Perspect, 2010; 118, 182−90. doi:  10.1289/ehp.0901234
[6] Hiratsuka H, Satoh SI, Satoh M, et al. Tissue distribution of cadmium in rats given minimum amounts of cadmium-polluted rice or cadmium chloride for 8 months. Toxicol Appl Pharmacol, 1999; 160, 183−91. doi:  10.1006/taap.1999.8768
[7] Ohta H, Yamauchi Y, Nakakita M, et al. Relationship between renal dysfunction and bone metabolism disorder in male rats after long-term oral quantitative cadmium administration. Ind Health, 2000; 38, 339−55. doi:  10.2486/indhealth.38.339
[8] Chandler JD, Wongtrakool C, Banton SA, et al. Low-dose oral cadmium increases airway reactivity and lung neuronal gene expression in mice. Physiol Rep, 2016; 4, e12821. doi:  10.14814/phy2.12821
[9] García-Esquinas E, Pollan M, Tellez-Plaza M, et al. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect, 2014; 122, 363−70. doi:  10.1289/ehp.1306587
[10] Waalkes MP. Cadmium carcinogenesis. Mutat Res, 2003; 533, 107−20. doi:  10.1016/j.mrfmmm.2003.07.011
[11] Marth E, Jelovcan S, Kleinhappl B, et al. The effect of heavy metals on the immune system at low concentrations. Int J Occup Med Environ Health, 2001; 14, 375−86.
[12] International Agency for Research on Cancer (IARC). A review of human carcinogens: personal habits and indoor combustions. International Agency for Research on Cancer, 2012; 1−575.
[13] Goyer RA, Liu J, Waalkes MP. Cadmium and cancer of prostate and testis. Biometals, 2004; 17, 555−8. doi:  10.1023/B:BIOM.0000045738.59708.20
[14] Shimada H, Yasutake A, Hirashima T, et al. Strain difference of cadmium accumulation by liver slices of inbred Wistar-Imamichi and Fischer 344 rats. Toxicol in Vitro, 2008; 22, 338−43. doi:  10.1016/j.tiv.2007.09.013
[15] Suwazono Y, Kido T, Nakagawa H, et al. Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure. Biomarkers, 2009; 14, 77−81. doi:  10.1080/13547500902730698
[16] Amara S, Abdelmelek H, Garrel C, et al. Preventive effect of zinc against cadmium-induced oxidative stress in the rat testis. J Reprod Dev, 2008; 54, 129−34. doi:  10.1262/jrd.18110
[17] Kayama F, Yoshida T, Elwell MR, et al. Cadmium-induced renal damage and proinflammatory cytokines: possible role of IL-6 in tubular epithelial cell regeneration. Toxicol Appl Pharmacol, 1995; 134, 26−34. doi:  10.1006/taap.1995.1165
[18] Manca D, Ricard AC, Van Tra H, et al. Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium. Arch Toxicol, 1994; 68, 364−9. doi:  10.1007/s002040050083
[19] Yamano T, DeCicco LA, Rikans LE. Attenuation of cadmium-induced liver injury in senescent male Fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol, 2000; 162, 68−75. doi:  10.1006/taap.1999.8833
[20] Thévenod F, Lee WK. Toxicology of cadmium and its damage to mammalian organs. In: Sigel A, Sigel H, Sigel RK. Cadmium: From Toxicity to Essentiality. Springer. 2013, 11: 415-90.
[21] Dong WM, Simeonova PP, Gallucci R, et al. Toxic metals stimulate inflammatory cytokines in hepatocytes through oxidative stress mechanisms. Toxicol Appl Pharmacol, 1998; 151, 359−66. doi:  10.1006/taap.1998.8481
[22] Hossein-Khannazer N, Azizi G, Eslami S, et al. The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol, 2020; 42, 1−8. doi:  10.1080/08923973.2019.1697284
[23] Olszowski T, Baranowska-Bosiacka I, Gutowska I, et al. Pro-inflammatory properties of cadmium. Acta Biochim Pol, 2012; 59, 475−82.
[24] Mirkov I, Popov Aleksandrov A, Ninkov M, et al. Immunotoxicology of cadmium: cells of the immune system as targets and effectors of cadmium toxicity. Food Chem Toxicol, 2021; 149, 112026. doi:  10.1016/j.fct.2021.112026
[25] Lansdown AB, Sampson B. Dermal toxicity and percutaneous absorption of cadmium in rats and mice. Lab Anim Sci, 1996; 46, 549−54.
[26] Lansdown ABG, Sampson B, Rowe A. Experimental observations in the rat on the influence of cadmium on skin wound repair. Int J Exp Pathol, 2001; 82, 35−41. doi:  10.1046/j.1365-2613.2001.00180.x
[27] Mei H, Yao PL, Wang SS, et al. Chronic low-dose cadmium exposure impairs cutaneous wound healing with defective early inflammatory responses after skin injury. Toxicol Sci, 2017; 159, 327−38. doi:  10.1093/toxsci/kfx137
[28] Tucovic D, Popov Aleksandrov A, Mirkov I, et al. Oral cadmium exposure affects skin immune reactivity in rats. Ecotoxicol Environ Saf, 2018; 164, 12−20. doi:  10.1016/j.ecoenv.2018.07.117
[29] Tucovic D, Mirkov I, Kulas J, et al. Dermatotoxicity of oral cadmium is strain-dependent and related to differences in skin stress response and inflammatory/immune activity. Environ Toxicol Pharmacol, 2020; 75, 103326. doi:  10.1016/j.etap.2020.103326
[30] Liaw FY, Chen WL, Kao TW, et al. Exploring the link between cadmium and psoriasis in a nationally representative sample. Sci Rep, 2017; 7, 1723. doi:  10.1038/s41598-017-01827-9
[31] Popov Aleksandrov A, Mirkov I, Tucovic D, et al. Immunomodulation by heavy metals as a contributing factor to inflammatory diseases and autoimmune reactions: cadmium as an example. Immunol Lett, 2021; 240, 106−22. doi:  10.1016/j.imlet.2021.10.003
[32] Alinaghi F, Bennike NH, Egeberg A, et al. Prevalence of contact allergy in the general population: a systematic review and meta-analysis. Contact Dermatitis, 2019; 80, 77−85. doi:  10.1111/cod.13119
[33] He DG, Wu LZ, Kim HK, et al. IL-17 and IFN-γ mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol, 2009; 183, 1463−70. doi:  10.4049/jimmunol.0804108
[34] Zhang L, Tinkle SS. Chemical activation of innate and specific immunity in contact dermatitis. J Invest Dermatol, 2000; 115, 168−76. doi:  10.1046/j.1523-1747.2000.00999.x
[35] Piguet PF, Grau GE, Hauser C, et al. Tumor necrosis factor is a critical mediator in hapten induced irritant and contact hypersensitivity reactions. J Exp Med, 1991; 173, 673−9. doi:  10.1084/jem.173.3.673
[36] Engeman T, Gorbachev AV, Kish DD, et al. The intensity of neutrophil infiltration controls the number of antigen-primed CD8 T cells recruited into cutaneous antigen challenge sites. J Leukoc Biol, 2004; 76, 941−9. doi:  10.1189/jlb.0304193
[37] Demenesku J, Popov Aleksandrov A, Mirkov I, et al. Strain differences of cadmium-induced toxicity in rats: insight from spleen and lung immune responses. Toxicol Lett, 2016; 256, 33−43. doi:  10.1016/j.toxlet.2016.05.022
[38] Ninkov M, Popov Aleksandrov A, Mirkov I, et al. Strain differences in toxicity of oral cadmium intake in rats. Food Chem Toxicol, 2016; 96, 11−23. doi:  10.1016/j.fct.2016.07.021
[39] Bhattacharyya MH, Whelton BD, Peterson DP, et al. Skeletal changes in multiparous mice fed a nutrient-sufficient diet containing cadmium. Toxicology, 1988; 50, 193−204. doi:  10.1016/0300-483X(88)90091-1
[40] Wang HF, Zhu GY, Shi YX, et al. Influence of environmental cadmium exposure on forearm bone density. J Bone Miner Res, 2003; 18, 553−60. doi:  10.1359/jbmr.2003.18.3.553
[41] Popov Aleksandrov A, Mirkov I, Demenesku J, et al. Strain differences in contact hypersensitivity reaction to dinitrochlorobenzene (DNCB) in rats. Food Chem Toxicol, 2015; 75, 94−103. doi:  10.1016/j.fct.2014.11.010
[42] Oez S, Platzer E, Welte K. A quantitative colorimetric method to evaluate the functional state of human polymorphonuclear leukocytes. Blut, 1990; 60, 97−102. doi:  10.1007/BF01720515
[43] Sumaria N, Roediger B, Ng LG, et al. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J Exp Med, 2011; 208, 505−18. doi:  10.1084/jem.20101824
[44] Honda T, Egawa G, Grabbe S, et al. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol, 2013; 133, 303−15. doi:  10.1038/jid.2012.284
[45] Biedermann T, Kneilling M, Mailhammer R, et al. Mast cells control neutrophil recruitment during T cell-mediated delayed-type hypersensitivity reactions through tumor necrosis factor and macrophage inflammatory protein 2. J Exp Med, 2000; 192, 1441−52. doi:  10.1084/jem.192.10.1441
[46] Kish DD, Li XX, Fairchild RL. CD8 T cells producing IL-17 and IFN-γ initiate the innate immune response required for responses to antigen skin challenge. J Immunol, 2009; 182, 5949−59. doi:  10.4049/jimmunol.0802830
[47] Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity, 2002; 17, 375−87. doi:  10.1016/S1074-7613(02)00391-6
[48] Popov A, Mirkov I, Miljković D, et al. Contact allergic response to dinitrochlorobenzene (DNCB) in rats: insight from sensitization phase. Immunobiology, 2011; 216, 763−70. doi:  10.1016/j.imbio.2010.12.007
[49] Chakraborty K, Chatterjee S, Bhattacharyya A. Modulation of phenotypic and functional maturation of murine bone-marrow-derived dendritic cells (BMDCs) induced by cadmium chloride. Int Immunopharmacol, 2014; 20, 131−40. doi:  10.1016/j.intimp.2014.02.015
[50] Hemdan NY. The role of interleukin-12 in the heavy metal-elicited immunomodulation: relevance of various evaluation methods. J Occup Med Toxicol, 2008; 3, 25. doi:  10.1186/1745-6673-3-25
[51] Carey JB, Allshire A, Van Pelt FN. Immune modulation by cadmium and lead in the acute reporter antigen-popliteal lymph node assay. Toxicol Sci, 2006; 91, 113−22. doi:  10.1093/toxsci/kfj142
[52] Spitzer MH, Nolan GP. Mass cytometry: single cells, many features. Cell, 2016; 165, 780−91. doi:  10.1016/j.cell.2016.04.019
[53] Zhang T, Warden AR, Li YY, et al. Progress and applications of mass cytometry in sketching immune landscapes. Clin Transl Med, 2020; 10, e206.
[54] Czarnowicki T, Kim HJ, Villani AP, et al. High-dimensional analysis defines multicytokine T-cell subsets and supports a role for IL-21 in atopic dermatitis. Allergy, 2021; 76, 3080−93. doi:  10.1111/all.14845
[55] Wu KY, Lin KJ, Li XY, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment. Front Immunol, 2020; 11, 1731. doi:  10.3389/fimmu.2020.01731
[56] Wang ZN, Sun Y, Yao WB, et al. Effects of cadmium exposure on the immune system and immunoregulation. Front Immunol, 2021; 12, 695484. doi:  10.3389/fimmu.2021.695484
[57] Riemschneider S, Herzberg M, Lehmann J. Subtoxic doses of cadmium modulate inflammatory properties of murine RAW 264.7 macrophages. Biomed Res Int, 2015; 2015, 295303.
[58] Turley AE, Zagorski JW, Kennedy RC, et al. Chronic low-level cadmium exposure in rats affects cytokine production by activated T cells. Toxicol Res, 2019; 8, 227−37. doi:  10.1039/C8TX00194D
[59] Fujisawa H, Kondo S, Wang B, et al. The role of CD4 molecules in the induction phase of contact hypersensitivity cytokine profiles in the skin and lymph nodes. Immunology, 1996; 89, 250−5. doi:  10.1046/j.1365-2567.1996.d01-726.x
[60] Ulrich P, Grenet O, Bluemel J, et al. Cytokine expression profiles during murine contact allergy: T helper 2 cytokines are expressed irrespective of the type of contact allergen. Arch Toxicol, 2001; 75, 470−9. doi:  10.1007/s002040100267
[61] Iyer SS, Cheng GH. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol, 2012; 32, 23−63. doi:  10.1615/CritRevImmunol.v32.i1.30
[62] Simkin GO, Tao JS, Levy JG, et al. IL-10 contributes to the inhibition of contact hypersensitivity in mice treated with photodynamic therapy. J Immunol, 2000; 164, 2457−62. doi:  10.4049/jimmunol.164.5.2457
[63] Ninkov M, Popov Aleksandrov A, Demenesku J, et al. Toxicity of oral cadmium intake: impact on gut immunity. Toxicol Lett, 2015; 237, 89−99. doi:  10.1016/j.toxlet.2015.06.002
[64] Odewumi C, Latinwo LM, Sinclair A, et al. Effect of cadmium on the expression levels of interleukin-1α and interleukin-10 cytokines in human lung cells. Mol Med Rep, 2015; 12, 6422−6. doi:  10.3892/mmr.2015.4316
[65] Sun B, Sun SH, Chan CC, et al. Evaluation of in vivo cytokine expression in EAU-susceptible and resistant rats: a role for IL-10 in resistance? Exp Eye Res, 2000; 70, 493-502.
[66] Grabbe S, Steinert M, Mahnke K, et al. Dissection of antigenic and irritative effects of epicutaneously applied haptens in mice. Evidence that not the antigenic component but nonspecific proinflammatory effects of haptens determine the concentration-dependent elicitation of allergic contact dermatitis. J Clin Invest, 1996; 98, 1158−64. doi:  10.1172/JCI118899