[1] Jamil RT, Foris LA, Snowden J. Proteus mirabilis infections. StatPearls Publishing. 2022.
[2] Berger SA. Proteus bacteraemia in a general hospital 1972-1982. J Hosp Infect, 1985; 6, 293−8. doi:  10.1016/S0195-6701(85)80133-X
[3] Luzzaro F, Perilli M, Amicosante G, et al. Properties of multidrug-resistant, ESBL-producing Proteus mirabilis isolates and possible role of β-lactam/β-lactamase inhibitor combinations. Int J Antimicrob Agents, 2001; 17, 131−5. doi:  10.1016/S0924-8579(00)00325-3
[4] D'Andrea MM, Literacka E, Zioga A, et al. Evolution and spread of a multidrug-resistant Proteus mirabilis clone with chromosomal AmpC-type cephalosporinases in Europe. Antimicrob Agents Chemother, 2011; 55, 2735−42. doi:  10.1128/AAC.01736-10
[5] Harada K, Niina A, Shimizu T, et al. Phenotypic and molecular characterization of antimicrobial resistance in Proteus mirabilis isolates from dogs. J Med Microbiol, 2014; 63, 1561−7. doi:  10.1099/jmm.0.081539-0
[6] Mazzariol A, Kocsis B, Koncan R, et al. Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. Clin Microbiol Infect, 2012; 18, E46−8. doi:  10.1111/j.1469-0691.2011.03728.x
[7] Mokracka J, Gruszczyńska B, Kaznowski A. Integrons, β-lactamase and qnr genes in multidrug resistant clinical isolates of Proteus mirabilis and P. vulgaris. APMIS, 2012; 120, 950−8. doi:  10.1111/j.1600-0463.2012.02923.x
[8] Wei QH, Hu QF, Li SS, et al. A novel functional class 2 integron in clinical Proteus mirabilis isolates. J Antimicrob Chemother, 2014; 69, 973−6. doi:  10.1093/jac/dkt456
[9] Dziri O, Alonso CA, Dziri R, et al. Metallo-β-lactamases and class D carbapenemases in south-east Tunisia: Implication of mobile genetic elements in their dissemination. Int J Antimicrob Agents, 2018; 52, 871−7. doi:  10.1016/j.ijantimicag.2018.06.002
[10] Marques C, Belas A, Franco A, et al. Increase in antimicrobial resistance and emergence of major international high-risk clonal lineages in dogs and cats with urinary tract infection: 16 year retrospective study. J Antimicrob Chemother, 2018; 73, 377−84. doi:  10.1093/jac/dkx401
[11] Kanayama A, Kobayashi I, Shibuya K. Distribution and antimicrobial susceptibility profile of extended-spectrum β-lactamase-producing Proteus mirabilis strains recently isolated in Japan. Int J Antimicrob Agents, 2015; 45, 113−8. doi:  10.1016/j.ijantimicag.2014.06.005
[12] Lin MF, Liou ML, Kuo CH, et al. Antimicrobial susceptibility and molecular epidemiology of Proteus mirabilis isolates from three hospitals in Northern Taiwan. Microb Drug Resist, 2019; 25, 1338−46. doi:  10.1089/mdr.2019.0066
[13] Mathur S, Sabbuba NA, Suller MTE, et al. Genotyping of urinary and fecal Proteus mirabilis isolates from individuals with long-term urinary catheters. Eur J Clin Microbiol Infect Dis, 2005; 24, 643−4. doi:  10.1007/s10096-005-0003-0
[14] de Been M, Pinholt M, Top J, et al. Core genome multilocus sequence typing scheme for high-resolution typing of Enterococcus faecium. J Clin Microbio, 2015; 53, 3788−97. doi:  10.1128/JCM.01946-15
[15] Pearce ME, Alikhan NF, Dallman TJ, et al. Comparative analysis of core genome MLST and SNP typing within a European Salmonella serovar Enteritidis outbreak. Int J Food Microbiol, 2018; 274, 1−11. doi:  10.1016/j.ijfoodmicro.2018.02.023
[16] Martak D, Valot B, Sauget M, et al. Fourier-transform infrared spectroscopy can quickly type gram-negative bacilli responsible for hospital outbreaks. Front Microbiol, 2019; 10, 1440. doi:  10.3389/fmicb.2019.01440
[17] Maiden MCJ, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA, 1998; 95, 3140−5. doi:  10.1073/pnas.95.6.3140
[18] Silva M, Machado MP, Silva DN, et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom, 2018; 4, 1−7.
[19] Hyatt D, Chen GL, Locascio PF, et al. Prodigal, prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 2010; 11, 119. doi:  10.1186/1471-2105-11-119
[20] Rasko DA, Myers GSA, Ravel J. Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics, 2005; 6, 2. doi:  10.1186/1471-2105-6-2
[21] Feil EJ. Small change: keeping pace with microevolution. Nat Rev Microbiol, 2004; 2, 483−95. doi:  10.1038/nrmicro904
[22] Jacobsen SM, Stickler DJ, Mobley HLT, et al. Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev, 2008; 21, 26−59. doi:  10.1128/CMR.00019-07
[23] Li X, Mobley HLT. MrpB functions as the terminator for assembly of Proteus mirabilis mannose-resistant Proteus-like fimbriae. Infect Immun, 1998; 66, 1759−63. doi:  10.1128/IAI.66.4.1759-1763.1998
[24] Tsai YL, Chien HF, Huang KT, et al. cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis. Sci Rep, 2017; 7, 7282. doi:  10.1038/s41598-017-07304-7
[25] Franz E, Gras LM, Dallman T. Significance of whole genome sequencing for surveillance, source attribution and microbial risk assessment of foodborne pathogens. Curr Opin Food Sci, 2016; 8, 74−9. doi:  10.1016/j.cofs.2016.04.004
[26] Jagadeesan B, Gerner-Smidt P, Allard MW, et al. The use of next generation sequencing for improving food safety: translation into practice. Food Microbiol, 2019; 79, 96−115. doi:  10.1016/j.fm.2018.11.005
[27] Ronholm J, Nasheri N, Petronella N, et al. Navigating microbiological food safety in the era of whole-genome sequencing. Clin Microbiol Rev, 2016; 29, 837−57. doi:  10.1128/CMR.00056-16
[28] Deneke C, Uelze L, Brendebach H, et al. Decentralized investigation of bacterial outbreaks based on hashed cgMLST. Front Microbiol, 2021; 12, 649517. doi:  10.3389/fmicb.2021.649517
[29] de Sales RO, Migliorini LB, Puga R, et al. A core genome multilocus sequence typing scheme for Pseudomonas aeruginosa. Front Microbiol, 2020; 11, 1049. doi:  10.3389/fmicb.2020.01049
[30] Guglielmini J, Bourhy P, Schiettekatte O, et al. Genus-wide Leptospira core genome multilocus sequence typing for strain taxonomy and global surveillance. PLoS Negl Trop Dis, 2019; 13, e0007374. doi:  10.1371/journal.pntd.0007374
[31] Mäesaar M, Mamede R, Elias T, et al. Retrospective use of whole-genome sequencing expands the multicountry outbreak cluster of Listeria monocytogenes ST1247. Int J Genomics, 2021; 2021; 6636138.
[32] Silva M, Machado MP, Silva DN, et al. chewBBACA: a complete suite for gene-by-gene schema creation and strain identification. Microb Genom, 2018; 4, e000166.
[33] Bialek-Davenet S, Criscuolo A, Ailloud F, et al. Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerg Infect Dis, 2014; 20, 1812−20. doi:  10.3201/eid2011.140206
[34] Moura A, Criscuolo A, Pouseele H, et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat Microbiol, 2017; 2, 16185. doi:  10.1038/nmicrobiol.2016.185
[35] O'Hara CM, Brenner FW, Miller JM. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin Microbiol Rev, 2000; 13, 534−46. doi:  10.1128/CMR.13.4.534
[36] Thornsberry C, Yee YC. Comparative activity of eight antimicrobial agents against clinical bacterial isolates from the United States, measured by two methods. Am J Med, 1996; 100, 26S−38S. doi:  10.1016/S0002-9343(96)00105-2
[37] Burall LS, Harro JM, Li X, et al. Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun, 2004; 72, 2922−38. doi:  10.1128/IAI.72.5.2922-2938.2004
[38] Massad G, Mobley HLT. Genetic organization and complete sequence of the Proteus mirabilis pmf fimbrial operon. Gene, 1994; 150, 101−4. doi:  10.1016/0378-1119(94)90866-4
[39] Opletal L, Ločárek M, Fraňková A, et al. Antimicrobial activity of extracts and isoquinoline alkaloids of selected papaveraceae plants. Nat Prod Commun, 2014; 9, 1709−12.
[40] Lei CW, Chen YP, Kang ZZ, et al. Characterization of a novel SXT/R391 integrative and conjugative element carrying cfr, blaCTX-M-65, fosA3, and aac(6')-Ib-cr in Proteus mirabilis. Antimicrob Agents Chemother, 2018; 62, e00849−18.
[41] Leulmi Z, Kandouli C, Mihoubi I, et al. First report of blaOXA-24 carbapenemase gene, armA methyltransferase and aac(6')-Ib-cr among multidrug-resistant clinical isolates of Proteus mirabilis in Algeria. J Glob Antimicrob Resist, 2019; 16, 125−9. doi:  10.1016/j.jgar.2018.08.019
[42] Siebor E, de Curraize C, Varin V, et al. Mobilisation of plasmid-mediated blaVEB-1 gene cassette into distinct genomic islands of Proteus mirabilis after ceftazidime exposure. J Glob Antimicrob Resist, 2021; 27, 26−30. doi:  10.1016/j.jgar.2021.07.011
[43] Sung JY, Kim S, Kwon G, et al. Molecular characterization of Salmonella genomic island 1 in Proteus mirabilis isolates from Chungcheong province, Korea. J Microbiol Biotechnol, 2017; 27, 2052−9. doi:  10.4014/jmb.1708.08040
[44] Ahmed AM, Hussein AIA, Shimamoto T. Proteus mirabilis clinical isolate harbouring a new variant of Salmonella genomic island 1 containing the multiple antibiotic resistance region. J Antimicrob Chemother, 2007; 59, 184−90.
[45] Schultz E, Barraud O, Madec JY, et al. Multidrug resistance Salmonella genomic island 1 in a Morganella morganii subsp. morganii human clinical isolate from france. mSphere, 2017; 2, e00118−17.
[46] Markovska R, Schneider I, Keuleyan E, et al. Dissemination of a multidrug-resistant VIM-1- and CMY-99-producing Proteus mirabilis clone in bulgaria. Microb Drug Resist, 2017; 23, 345−50. doi:  10.1089/mdr.2016.0026
[47] Fasciana T, Gentile B, Aquilina M, et al. Co-existence of virulence factors and antibiotic resistance in new Klebsiella pneumoniae clones emerging in south of Italy. BMC Infect Dis, 2019; 19, 928. doi:  10.1186/s12879-019-4565-3
[48] Palzkill T, Thomson KS, Sanders CC, et al. New variant of TEM-10 beta-lactamase gene produced by a clinical isolate of proteus mirabilis. Antimicrob Agents Chemother, 1995; 39, 1199−200. doi:  10.1128/AAC.39.5.1199
[49] Pitout JDD, Thomson KS, Hanson ND, et al. β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob Agents Chemother, 1998; 42, 1350−4. doi:  10.1128/AAC.42.6.1350
[50] Verdet C, Arlet G, Redjeb SB, et al. Characterisation of CMY-4, an AmpC-type plasmid-mediated β-lactamase in a Tunisian clinical isolate of Proteus mirabilis. FEMS Microbiol Lett, 1998; 169, 235−40.