[1] Manikat R, Ahmed A, Kim D. Up-to-date global epidemiology of nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr, 2023; 12, 956−9. doi:  10.21037/hbsn-23-548
[2] Feng G, Valenti L, Wong VWS, et al. Recompensation in cirrhosis: unravelling the evolving natural history of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol, 2024; 21, 46−56. doi:  10.1038/s41575-023-00846-4
[3] Younossi ZM, Wong G, Anstee QM, et al. The global burden of liver disease. Clin Gastroenterol Hepatol, 2023; 21, 1978−91. doi:  10.1016/j.cgh.2023.04.015
[4] Liu L, Shao YH, Feng EQ, et al. Risk of developing non-alcoholic fatty liver disease over time in a cohort of the elderly in Qingdao, China. Biomed Environ Sci, 2023; 36, 760−7.
[5] Zhao H, Qiu X, Li HZ, et al. Association between serum uric acid to HDL-cholesterol ratio and nonalcoholic fatty liver disease risk among Chinese adults. Biomed Environ Sci, 2023; 36, 1−9.
[6] Pourteymour S, Drevon CA, Dalen KT, et al. Mechanisms behind NAFLD: a system genetics perspective. Curr Atheroscler Rep, 2023; 25, 869−78. doi:  10.1007/s11883-023-01158-3
[7] Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet, 2008; 40, 1461−5. doi:  10.1038/ng.257
[8] Speliotes EK, Yerges-Armstrong LM, Wu J, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet, 2011; 7, e1001324. doi:  10.1371/journal.pgen.1001324
[9] Kitamoto T, Kitamoto A, Yoneda M, et al. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet, 2013; 132, 783−92. doi:  10.1007/s00439-013-1294-3
[10] Kozlitina J, Smagris E, Stender S, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet, 2014; 46, 352−6. doi:  10.1038/ng.2901
[11] Chen W, Coombes BJ, Larson NB. Recent advances and challenges of rare variant association analysis in the biobank sequencing era. Front Genet, 2022; 13, 1014947. doi:  10.3389/fgene.2022.1014947
[12] Lee YH. Meta-analysis of genetic association studies. Ann Lab Med, 2015; 35, 283−7. doi:  10.3343/alm.2015.35.3.283
[13] Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology, 2011; 53, 1883−94. doi:  10.1002/hep.24283
[14] Ye Q, Qian BX, Yin WL, et al. Association between the HFE C282Y, H63D polymorphisms and the risks of non-alcoholic fatty liver disease, liver cirrhosis and hepatocellular carcinoma: an updated systematic review and meta-analysis of 5, 758 cases and 14, 741 controls. PLoS One, 2016; 11, e0163423. doi:  10.1371/journal.pone.0163423
[15] Teo K, Abeysekera KWM, Adams L, et al. rs641738C>T near MBOAT7 is associated with liver fat, ALT and fibrosis in NAFLD: a meta-analysis. J Hepatol, 2021; 74, 20−30. doi:  10.1016/j.jhep.2020.08.027
[16] Ioannidis JPA, Boffetta P, Little J, et al. Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol, 2008; 37, 120−32. doi:  10.1093/ije/dym159
[17] The International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature, 2007; 449, 851−61. doi:  10.1038/nature06258
[18] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol, 2010; 25, 603−5. doi:  10.1007/s10654-010-9491-z
[19] Zintzaras E, Lau J. Synthesis of genetic association studies for pertinent gene-disease associations requires appropriate methodological and statistical approaches. J Clin Epidemiol, 2008; 61, 634−45. doi:  10.1016/j.jclinepi.2007.12.011
[20] DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials, 2015; 45, 139−45. doi:  10.1016/j.cct.2015.09.002
[21] Whitehead A, Whitehead J. A general parametric approach to the meta-analysis of randomized clinical trials. Stat Med, 1991; 10, 1665−77. doi:  10.1002/sim.4780101105
[22] Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med, 2002; 21, 1539−58. doi:  10.1002/sim.1186
[23] Egger M, Davey Smith G, Schneider M, et al. Bias in meta-analysis detected by a simple, graphical test. BMJ, 1997; 315, 629−34. doi:  10.1136/bmj.315.7109.629
[24] Chen XP, Zhou PC, De L, et al. The roles of transmembrane 6 superfamily member 2 rs58542926 polymorphism in chronic liver disease: a meta-analysis of 24, 147 subjects. Mol Genet Genomic Med, 2019; 7, e824. doi:  10.1002/mgg3.824
[25] Mahdessian H, Taxiarchis A, Popov S, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci USA, 2014; 111, 8913−8. doi:  10.1073/pnas.1323785111
[26] He SQ, McPhaul C, Li JZ, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem, 2010; 285, 6706−15. doi:  10.1074/jbc.M109.064501
[27] Kumari M, Schoiswohl G, Chitraju C, et al. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab, 2012; 15, 691−702. doi:  10.1016/j.cmet.2012.04.008
[28] Lu FB, Hu ED, Xu LM, et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. Expert Rev Gastroenterol Hepatol, 2018; 12, 491−502. doi:  10.1080/17474124.2018.1460202
[29] Wu PB, Shu YX, Guo F, et al. Association between patatin-like phospholipase domain-containing protein 3 gene rs738409 polymorphism and non-alcoholic fatty liver disease susceptibility: a Meta-analysis. Chin J Epidemiol, 2015; 36, 78−82. (In Chinese
[30] Xia Y, Huang CX, Li GY, et al. Meta-analysis of the association between MBOAT7 rs641738, TM6SF2 rs58542926 and nonalcoholic fatty liver disease susceptibility. Clin Res Hepatol Gastroenterol, 2019; 43, 533−41. doi:  10.1016/j.clinre.2019.01.008
[31] Caddeo A, Jamialahmadi O, Solinas G, et al. MBOAT7 is anchored to endomembranes by six transmembrane domains. J Struct Biol, 2019; 206, 349−60. doi:  10.1016/j.jsb.2019.04.006
[32] Song JN, Da Costa KA, Fischer LM, et al. Polymorphism of the PEMT gene and susceptibility to nonalcoholic fatty liver disease (NAFLD). FASEB J, 2005; 19, 1266−71. doi:  10.1096/fj.04-3580com
[33] Tan HL, Mohamed R, Mohamed Z, et al. Phosphatidylethanolamine N-methyltransferase gene rs7946 polymorphism plays a role in risk of nonalcoholic fatty liver disease: evidence from meta-analysis. Pharmacogenet Genomics, 2016; 26, 88−95. doi:  10.1097/FPC.0000000000000193
[34] Zain SM, Mohamed Z, Mohamed R. A common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis. J Gastroenterol Hepatol, 2015; 30, 21−7. doi:  10.1111/jgh.12714
[35] Cai W, Weng DH, Yan P, et al. Genetic polymorphisms associated with nonalcoholic fatty liver disease in Uyghur population: a case-control study and meta-analysis. Lipids Health Dis, 2019; 18, 14. doi:  10.1186/s12944-018-0877-3
[36] Hayward BE, Dunlop N, Intody S, et al. Organization of the human glucokinase regulator geneGCKR. Genomics, 1998; 49, 137−42. doi:  10.1006/geno.1997.5195
[37] Beer NL, Tribble ND, McCulloch LJ, et al. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet, 2009; 18, 4081−8. doi:  10.1093/hmg/ddp357
[38] Sparsø T, Andersen G, Nielsen T, et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes. Diabetologia, 2008; 51, 70−5.
[39] Tan HL, Zain SM, Mohamed R, et al. Association of glucokinase regulatory gene polymorphisms with risk and severity of non-alcoholic fatty liver disease: an interaction study with adiponutrin gene. J Gastroenterol, 2014; 49, 1056−64. doi:  10.1007/s00535-013-0850-x
[40] López Rodríguez M, Kaminska D, Lappalainen K, et al. Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells. Genome Med, 2017; 9, 63. doi:  10.1186/s13073-017-0453-x
[41] Trujillo ME, Scherer PE. Adiponectin--journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med, 2005; 257, 167-75.
[42] Heid IM, Henneman P, Hicks A, et al. Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: results of genome-wide association analyses including 4659 European individuals. Atherosclerosis, 2010; 208, 412−20. doi:  10.1016/j.atherosclerosis.2009.11.035
[43] Gu HF. Biomarkers of adiponectin: plasma protein variation and genomic DNA polymorphisms. Biomark Insights, 2009; 4, 123−33.
[44] Bennett MJ, Lebrón JA, Bjorkman PJ. Crystal structure of the hereditary haemochromatosis protein HFE complexed with transferrin receptor. Nature, 2000; 403, 46−53. doi:  10.1038/47417
[45] Sun MY, Zhang L, Shi SL, et al. Associations between methylenetetrahydrofolate reductase (MTHFR) polymorphisms and Non-Alcoholic Fatty Liver Disease (NAFLD) risk: a meta-analysis. PLoS One, 2016; 11, e0154337. doi:  10.1371/journal.pone.0154337
[46] Guenther BD, Sheppard CA, Tran P, et al. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia. Nat Struct Biol, 1999; 6, 359−65. doi:  10.1038/7594
[47] Van Der Put NMJ, Gabreëls F, Stevens EMB, et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet, 1998; 62, 1044-51.
[48] Santilli F, Davì G, Patrono C. Homocysteine, methylenetetrahydrofolate reductase, folate status and atherothrombosis: a mechanistic and clinical perspective. Vascul Pharmacol, 2016; 78, 1−9. doi:  10.1016/j.vph.2015.06.009
[49] Wang JK, Feng ZW, Li YC, et al. Association of tumor necrosis factor-α gene promoter polymorphism at sites -308 and -238 with non-alcoholic fatty liver disease: a meta-analysis. J Gastroenterol Hepatol, 2012; 27, 670−6. doi:  10.1111/j.1440-1746.2011.06978.x
[50] Hajeer AH, Hutchinson IV. Influence of TNFα gene polymorphisms on TNFα production and disease. Hum Immunol, 2001; 62, 1191−9. doi:  10.1016/S0198-8859(01)00322-6
[51] Wilson AG, Symons JA, McDowell TL, et al. Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation. Proc Natl Acad Sci USA, 1997; 94, 3195−9. doi:  10.1073/pnas.94.7.3195
[52] Wong VWS, Wong GLH, Tsang SWC, et al. Genetic polymorphisms of adiponectin and tumor necrosis factor-alpha and nonalcoholic fatty liver disease in Chinese people. J Gastroenterol Hepatol, 2008; 23, 914−21. doi:  10.1111/j.1440-1746.2008.05344.x