[1] Morales-Alamo D, Losa-Reyna J, Torres-Peralta R, et al. What limits performance during whole-body incremental exercise to exhaustion in humans? J Physiol, 2015; 593, 4631-48.
[2] Wang PX, Wang DH, Hu JM, et al. Natural bioactive peptides to beat exercise-induced fatigue: A review. Food Biosci, 2021; 43, 101298. doi:  10.1016/j.fbio.2021.101298
[3] Nakai N, Kawano F, Ohira Y. Control of muscle protein synthesis in response to exercise and amino acids. J Phys Fit Sports Med, 2012; 1, 297−305. doi:  10.7600/jpfsm.1.297
[4] Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr, 2011, 93; 884S-90S.
[5] Feng SY, Wu SJ, Chang YC, et al. Stimulation of GLUT4 glucose uptake by anthocyanin-rich extract from black rice ( Oryza sativa L.) via PI3K/Akt and AMPK/p38 MAPK signaling in C2C12 cells. Metabolites, 2022; 12, 856. doi:  10.3390/metabo12090856
[6] Zhou YP, Cao FL, Wu Q, et al. Dietary supplementation of octacosanol improves exercise-induced fatigue and its molecular mechanism. J Agric Food Chem, 2021; 69, 7603−18. doi:  10.1021/acs.jafc.1c01764
[7] Huang WY, Pan JH, Jeong I, et al. Antifatigue and anti-inflammatory effects of Cervus elaphus L. , Angelica gigas Nakai, and Astragalus membranaceus bunge complex extracts in physically fatigued mice. J Med Food, 2022; 25, 1126-32.
[8] Neelam K, Dey S, Sim R, et al. Fructus lycii: a natural dietary supplement for amelioration of retinal diseases. Nutrients, 2021; 13, 246. doi:  10.3390/nu13010246
[9] Yang J, Wei YQ, Ding JB, et al. Research and application of Lycii fructus in medicinal field. Chin Herb Med, 2018; 10, 339−52. doi:  10.1016/j.chmed.2018.08.006
[10] Wen XH, Lin JR, Xu GQ, et al. Preventing exercise-induced low blood testosterone by supplementation of Chinese Wolfberry Juice. Chin J Sports Med, 2016; 35, 344−8. (In Chinese
[11] Luo TT, Lu Y, Yan SK, et al. Network pharmacology in research of Chinese medicine formula: methodology, application and prospective. Chin J Integr Med, 2020; 26, 72−80. doi:  10.1007/s11655-019-3064-0
[12] Xu X, Zhang WX, Huang C, et al. A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci, 2012; 13, 6964−82. doi:  10.3390/ijms13066964
[13] Tao WY, Xu X, Wang X, et al. Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol, 2013; 145, 1−10. doi:  10.1016/j.jep.2012.09.051
[14] Dhanya R, Arun KB, Syama HP, et al. Rutin and quercetin enhance glucose uptake in L6 myotubes under oxidative stress induced by tertiary butyl hydrogen peroxide. Food Chem, 2014; 158: 546−54. doi:  10.1016/j.foodchem.2014.02.151
[15] Zupin L, Psilodimitrakopoulos S, Celsi F, et al. Upside-down preference in the Forskolin-induced in vitro differentiation of 50B11 sensory neurons: a morphological investigation by label-free non-linear microscopy. Int J Mol Sci, 2023; 24, 8354. doi:  10.3390/ijms24098354
[16] Xu M, Wang XH, Li YN, et al. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner. Front Immunol, 2021; 12, 618501. doi:  10.3389/fimmu.2021.618501
[17] Gerwyn M, Maes M. Mechanisms explaining muscle fatigue and muscle pain in patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS): a review of recent findings. Curr Rheumatol Rep, 2017; 19, 1. doi:  10.1007/s11926-017-0628-x
[18] Ren YH, Li Y, Lv JN, et al. Parthenolide regulates oxidative stress-induced mitophagy and suppresses apoptosis through p53 signaling pathway in C2C12 myoblasts. J Cell Biochem, 2019; 120, 15695−708. doi:  10.1002/jcb.28839
[19] López-Soldado I, Guinovart JJ, Duran J. Increased liver glycogen levels enhance exercise capacity in mice. J Biol Chem, 2021; 297, 100976. doi:  10.1016/j.jbc.2021.100976
[20] Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training. Sports Med, 2011; 41, 1043−69. doi:  10.2165/11594400-000000000-00000
[21] Zhang XF, Chen J, Yang JL, et al. UPLC-MS/MS analysis for antioxidant components of Lycii Fructus based on spectrum-effect relationship. Talanta, 2018; 180, 389−95. doi:  10.1016/j.talanta.2017.12.078
[22] Li Y, Yao JY, Han CY, et al. Quercetin, inflammation and immunity. Nutrients, 2016; 8, 167. doi:  10.3390/nu8030167
[23] Manjeet KR, Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-α production in murine macrophages. Int J Immunopharmacol, 1999; 21, 435−43. doi:  10.1016/S0192-0561(99)00024-7
[24] D’Andrea G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia, 2015; 106, 256-71.
[25] Chen XL, Liang DH, Huang ZQ, et al. Anti-fatigue effect of quercetin on enhancing muscle function and antioxidant capacity. J Food Biochem, 2021; 45, e13968.
[26] Hargreaves M. Exercise, muscle, and CHO metabolism. Scand J Med Sci Sports, 2015; 25, 29−33. doi:  10.1111/sms.12607
[27] Seiler SE, Koves TR, Gooding JR, et al. Carnitine acetyltransferase mitigates metabolic inertia and muscle fatigue during exercise. Cell Metab, 2015; 22, 65−76. doi:  10.1016/j.cmet.2015.06.003
[28] Wagatsuma A, Sakuma K. Mitochondria as a potential regulator of myogenesis. Sci World J, 2013; 2013, 593267.
[29] Gan ZJ, Fu TT, Kelly DP, et al. Skeletal muscle mitochondrial remodeling in exercise and diseases. Cell Res, 2018; 28, 969−80. doi:  10.1038/s41422-018-0078-7
[30] Davis JM, Murphy EA, Carmichael MD, et al. Quercetin increases brain and muscle mitochondrial biogenesis and exercise tolerance. Am J Physiol Regul Integr Comp Physiol, 2009; 296, R1071−7. doi:  10.1152/ajpregu.90925.2008
[31] Bouche C, Serdy S, Kahn CR, et al. The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev, 2004; 25, 807−30. doi:  10.1210/er.2003-0026
[32] Tsao JP, Bernard JR, Hsu HC, et al. Short-term oral quercetin supplementation improves post-exercise insulin sensitivity, antioxidant capacity and enhances subsequent cycling time to exhaustion in healthy adults: a pilot study. Front Nutr, 2022; 9, 875319. doi:  10.3389/fnut.2022.875319
[33] Guo W, Liu S, Zheng XT, et al. Network pharmacology/metabolomics-based validation of AMPK and PI3K/AKT signaling pathway as a central role of Shengqi Fuzheng injection regulation of mitochondrial dysfunction in cancer-related fatigue. Oxid Med Cell Longev, 2021; 2021, 5556212.
[34] Chen ZP, Stephens TJ, Murthy S, et al. Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes, 2003; 52, 2205−12. doi:  10.2337/diabetes.52.9.2205
[35] Zhang XY, Wang LF, Peng LZ, et al. Dihydromyricetin protects HUVECs of oxidative damage induced by sodium nitroprusside through activating PI3K/Akt/FoxO3a signalling pathway. J Cell Mol Med, 2019; 23: 4829−38. doi:  10.1111/jcmm.14406
[36] Rezatabar S, Karimian A, Rameshknia V, et al. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J Cell Physiol, 2019; 234: 14951−65. doi:  10.1002/jcp.28334
[37] Zhuang CL, Mao XY, Liu S, et al. Ginsenoside Rb1 improves postoperative fatigue syndrome by reducing skeletal muscle oxidative stress through activation of the PI3K/Akt/Nrf2 pathway in aged rats. Eur J Pharmacol, 2014; 740, 480−7. doi:  10.1016/j.ejphar.2014.06.040
[38] Li Q, Wang YZ, Cai GS, et al. Antifatigue activity of liquid cultured Tricholoma matsutake mycelium partially via regulation of antioxidant pathway in mouse. Biomed Res Int, 2015; 2015, 562345.
[39] Suzuki K, Nakaji S, Yamada M, et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol, 2002; 8, 6−48.
[40] Wan JJ, Qin Z, Wang PY, et al. Muscle fatigue: General understanding and treatment. Exp Mol Med, 2017; 49, e384. doi:  10.1038/emm.2017.194
[41] Simpson RJ, Florida-James GD, Whyte GP, et al. The effects of intensive, moderate and downhill treadmill running on human blood lymphocytes expressing the adhesion/activation molecules CD54 (ICAM-1), CD18 (β2 integrin) and CD53. Eur J Appl Physiol, 2006; 97, 109−21. doi:  10.1007/s00421-006-0146-4
[42] Ye J, Shen CH, Huang YY, et al. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model. J Sci Food Agric, 2017; 97, 4548−56. doi:  10.1002/jsfa.8322