[1] Li BQ, Ding YF, Cheng X, et al. Polyethylene microplastics affect the distribution of gut microbiota and inflammation development in mice. Chemosphere, 2020; 244, 125492. doi:  10.1016/j.chemosphere.2019.125492
[2] Plastics Europe. Plastics - the facts 2022. Plastics Europe, 2022. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/. [2024-01-16
[3] Ali MU, Lin SY, Yousaf B, et al. Environmental emission, fate and transformation of microplastics in biotic and abiotic compartments: global status, recent advances and future perspectives. Sci Total Environ, 2021; 791, 148422. doi:  10.1016/j.scitotenv.2021.148422
[4] Jin YX, Lu L, Tu WQ, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ, 2019; 649, 308−17. doi:  10.1016/j.scitotenv.2018.08.353
[5] Lu L, Wan ZQ, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ, 2018; 631-632, 449-58.
[6] Deng YF, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep, 2017; 7, 46687. doi:  10.1038/srep46687
[7] Lee CW, Hsu LF, Wu IL, et al. Exposure to polystyrene microplastics impairs hippocampus-dependent learning and memory in mice. J Hazard Mater, 2022; 430, 128431. doi:  10.1016/j.jhazmat.2022.128431
[8] Wang YL, Lee YH, Hsu YH, et al. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice. Environ Health Perspect, 2021; 129, 057003. doi:  10.1289/EHP7612
[9] Xu LL, Cao L, Huang W, et al. Assessment of plastic pollution in the Bohai Sea: abundance, distribution, morphological characteristics and chemical components. Environ Pollut, 2021; 278, 116874. doi:  10.1016/j.envpol.2021.116874
[10] Li J, Song Y, Cai YB. Focus topics on microplastics in soil: analytical methods, occurrence, transport, and ecological risks. Environ Pollut, 2020; 257, 113570. doi:  10.1016/j.envpol.2019.113570
[11] Digka N, Tsangaris C, Torre M, et al. Microplastics in mussels and fish from the Northern Ionian Sea. Mar Pollut Bull, 2018; 135, 30−40. doi:  10.1016/j.marpolbul.2018.06.063
[12] Ragusa A, Svelato A, Santacroce C, et al. Plasticenta: first evidence of microplastics in human placenta. Environ Int, 2021; 146, 106274. doi:  10.1016/j.envint.2020.106274
[13] Pei X, Heng X, Chu WH. Polystyrene nano/microplastics induce microbiota dysbiosis, oxidative damage, and innate immune disruption in zebrafish. Microb Pathog, 2022; 163, 105387. doi:  10.1016/j.micpath.2021.105387
[14] Li ZL, Feng CH, Pang W, et al. Nanoplastic-induced genotoxicity and intestinal damage in freshwater benthic clams ( Corbicula Fluminea): comparison with microplastics. ACS Nano, 2021; 15, 9469−81. doi:  10.1021/acsnano.1c02407
[15] Wang XX, Ren XM, He H, et al. Cytotoxicity and pro-inflammatory effect of polystyrene Nano-plastic and micro-plastic on RAW264.7 cells. Toxicology, 2023; 484, 153391. doi:  10.1016/j.tox.2022.153391
[16] Liang BX, Zhong YZ, Huang YJ, et al. Underestimated health risks: polystyrene micro- and nanoplastics jointly induce intestinal barrier dysfunction by ROS-mediated epithelial cell apoptosis. Part Fibre Toxicol, 2021; 18, 20. doi:  10.1186/s12989-021-00414-1
[17] Ding JN, Zhang SS, Razanajatovo RM, et al. Accumulation, tissue distribution, and biochemical effects of polystyrene microplastics in the freshwater fish red tilapia ( Oreochromis niloticus). Environ Pollut, 2018; 238, 1−9. doi:  10.1016/j.envpol.2018.03.001
[18] Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics. Adv Drug Deliv Rev, 2001; 50, 107−42. doi:  10.1016/S0169-409X(01)00152-1
[19] Carr KE, Smyth SH, McCullough MT, et al. Morphological aspects of interactions between microparticles and mammalian cells: intestinal uptake and onward movement. Prog Histochem Cytochem, 2012; 46, 185−252. doi:  10.1016/j.proghi.2011.11.001
[20] Zhang YT, Wang SL, Olga V, et al. The potential effects of microplastic pollution on human digestive tract cells. Chemosphere, 2022; 291, 132714. doi:  10.1016/j.chemosphere.2021.132714
[21] Li XR, Zhang TT, Lv WT, et al. Intratracheal administration of polystyrene microplastics induces pulmonary fibrosis by activating oxidative stress and Wnt/β-catenin signaling pathway in mice. Ecotoxicol Environ Saf, 2022; 232, 113238. doi:  10.1016/j.ecoenv.2022.113238
[22] Stock V, Böhmert L, Lisicki E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol, 2019; 93, 1817−33. doi:  10.1007/s00204-019-02478-7
[23] Ding YF, Zhang RQ, Li BQ, et al. Tissue distribution of polystyrene nanoplastics in mice and their entry, transport, and cytotoxicity to GES-1 cells. Environ Pollut, 2021; 280, 116974. doi:  10.1016/j.envpol.2021.116974
[24] Xu DH, Ma YH, Han XD, et al. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J Hazard Mater, 2021; 417, 126092. doi:  10.1016/j.jhazmat.2021.126092
[25] Yang ZS, Bai YL, Jin CH, et al. Evidence on invasion of blood, adipose tissues, nervous system and reproductive system of mice after a single oral exposure: nanoplastics versus microplastics. Biomed Environ Sci, 2022; 35, 1025−37.
[26] Sun W, Jin CH, Bai YL, et al. Blood uptake and urine excretion of nano- and micro-plastics after a single exposure. Sci Total Environ, 2022; 848, 157639. doi:  10.1016/j.scitotenv.2022.157639
[27] Lankveld DPK, Oomen AG, Krystek P, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 2010; 31, 8350−61. doi:  10.1016/j.biomaterials.2010.07.045
[28] Xu MK, Halimu G, Zhang QR, et al. Internalization and toxicity: a preliminary study of effects of nanoplastic particles on human lung epithelial cell. Sci Total Environ, 2019; 694, 133794. doi:  10.1016/j.scitotenv.2019.133794
[29] Stock V, Fahrenson C, Thuenemann A, et al. Impact of artificial digestion on the sizes and shapes of microplastic particles. Food Chem Toxicol, 2020; 135, 111010. doi:  10.1016/j.fct.2019.111010
[30] Yang YF, Chen CY, Lu TH, et al. Toxicity-based toxicokinetic/toxicodynamic assessment for bioaccumulation of polystyrene microplastics in mice. J Hazard Mater, 2019; 366, 703−13. doi:  10.1016/j.jhazmat.2018.12.048
[31] Li SW, Shi M, Wang YL, et al. Keap1-Nrf2 pathway up-regulation via hydrogen sulfide mitigates polystyrene microplastics induced-hepatotoxic effects. J Hazard Mater, 2021; 402, 123933. doi:  10.1016/j.jhazmat.2020.123933
[32] Chen YC, Chen KF, Lin KYA, et al. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations. J Hazard Mater, 2022; 427, 127871. doi:  10.1016/j.jhazmat.2021.127871
[33] Meng XM, Zhang JW, Wang WJ, et al. Effects of nano- and microplastics on kidney: physicochemical properties, bioaccumulation, oxidative stress and immunoreaction. Chemosphere, 2022; 288, 132631. doi:  10.1016/j.chemosphere.2021.132631