[1] Stearns RC, Paulauskis JD, Godleski JJ. Endocytosis of ultrafine particles by A549 cells. Am J Respir Cell Mol Biol, 2001; 24, 108−15. doi:  10.1165/ajrcmb.24.2.4081
[2] Fu J, Jiang D, Lin G, et al. An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China. BMJ Open, 2015; 5, e009452. doi:  10.1136/bmjopen-2015-009452
[3] Fan J, Li S, Fan C, et al. The impact of PM2.5 on asthma emergency department visits: a systematic review and meta-analysis. Environ Sci Pollut Res Int, 2016; 23, 843−50. doi:  10.1007/s11356-015-5321-x
[4] Li R, Zhou R, Zhang J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol Lett, 2018; 15, 7506−14.
[5] Wu W, Muller R, Berhane K, et al. Inflammatory response of monocytes to ambient particles varies by highway proximity. Am J Respir Cell Mol Biol, 2014; 51, 802−9. doi:  10.1165/rcmb.2013-0265OC
[6] Moller P, Danielsen PH, Karottki DG, et al. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res Rev Mutat Res, 2014; 762C, 133−66.
[7] Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, et al. Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol, 2010; 26, 481−98. doi:  10.1007/s10565-010-9158-2
[8] Zhou Z, Liu Y, Duan F, et al. Transcriptomic Analyses of the Biological Effects of Airborne PM2.5 Exposure on Human Bronchial Epithelial Cells. PLoS One, 2015; 10, e0138267. doi:  10.1371/journal.pone.0138267
[9] Rumelhard M, Ramgolam K, Hamel R, et al. Expression and role of EGFR ligands induced in airway cells by PM2.5 and its components. Eur Respir J, 2007; 30, 1064−73. doi:  10.1183/09031936.00085907
[10] Dysart MM, Galvis BR, Russell AG, et al. Environmental particulate (PM2.5) augments stiffness-induced alveolar epithelial cell mechanoactivation of transforming growth factor beta. PLoS One, 2014; 9, e106821. doi:  10.1371/journal.pone.0106821
[11] He M, Ichinose T, Yoshida Y, et al. Urban PM2.5 exacerbates allergic inflammation in the murine lung via a TLR2/TLR4/MyD88-signaling pathway. Sci Rep, 2017; 7, 11027. doi:  10.1038/s41598-017-11471-y
[12] LeBlanc ME, Wang W, Caberoy NB, et al. Hepatoma-derived growth factor-related protein-3 is a novel angiogenic factor. PLoS One, 2015; 10, e0127904. doi:  10.1371/journal.pone.0127904
[13] Guo F, Ding Y, Caberoy N, et al. ABCF1 extrinsically regulates retinal pigment epithelial cell phagocytosis. Mol Biol Cell, 2015; 26, 2311−20. doi:  10.1091/mbc.E14-09-1343
[14] Ding Y, Caberoy NB, Guo F, et al. Reticulocalbin-1 facilitates microglial phagocytosis. PLoS One, 2015; 10, e0126993. doi:  10.1371/journal.pone.0126993
[15] Caberoy NB, Zhou Y, Alvarado G, et al. Efficient identification of phosphatidylserine-binding proteins by ORF phage display. Biochem Biophys Res Commun, 2009; 386, 197−201. doi:  10.1016/j.bbrc.2009.06.010
[16] Zhao Y, Xu G, Wang S, et al. Chitosan oligosaccharides alleviate PM2.5-induced lung inflammation in rats. Environ Sci Pollut Res Int, 2018; 25, 34221−7. doi:  10.1007/s11356-018-3365-4
[17] Liu Q, Baumgartner J, Schauer JJ. Source Apportionment of Fine-Particle, Water-Soluble Organic Nitrogen and Its Association with the Inflammatory Potential of Lung Epithelial Cells. Environ Sci Technol, 2019; 53, 9845−54. doi:  10.1021/acs.est.9b02523
[18] Liu Q, Baumgartner J, Zhang Y, et al. Oxidative potential and inflammatory impacts of source apportioned ambient air pollution in Beijing. Environ Sci Technol, 2014; 48, 12920−9. doi:  10.1021/es5029876
[19] Liu Q, Lu Z, Xiong Y, et al. Oxidative potential of ambient PM2.5 in Wuhan and its comparisons with eight areas of China. Sci Total Environ, 2020; 701, 134844. doi:  10.1016/j.scitotenv.2019.134844
[20] Corsini E, Budello S, Marabini L, et al. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines. Arch Toxicol, 2013; 87, 2187−99. doi:  10.1007/s00204-013-1071-z
[21] Wang Y, Zhong Y, Hou T, et al. PM2.5 induces EMT and promotes CSC properties by activating Notch pathway in vivo and vitro. Ecotoxicol Environ Saf, 2019; 178, 159−67. doi:  10.1016/j.ecoenv.2019.03.086
[22] Caberoy NB, Maiguel D, Kim Y, et al. Identification of tubby and tubby-like protein 1 as eat-me signals by phage display. Exp Cell Res, 2010; 316, 245−57. doi:  10.1016/j.yexcr.2009.10.008
[23] Caberoy NB, Zhou Y, Jiang X, et al. Efficient identification of tubby-binding proteins by an improved system of T7 phage display. J Mol Recognit, 2010; 23, 74−83.
[24] LeBlanc ME, Wang W, Chen X, et al. Secretogranin III as a disease-associated ligand for antiangiogenic therapy of diabetic retinopathy. J Exp Med, 2017; 214, 1029−47. doi:  10.1084/jem.20161802
[25] Li W. Eat-me signals: Keys to molecular phagocyte biology and "Appetite" control. J Cell Physiol, 2012; 227, 1291−7. doi:  10.1002/jcp.22815
[26] Atagi Y, Liu CC, Painter MM, et al. Apolipoprotein E Is a Ligand for Triggering Receptor Expressed on Myeloid Cells 2(TREM2). J Biol Chem, 2015; 290, 26043−50. doi:  10.1074/jbc.M115.679043
[27] Grainger DJ, Reckless J, McKilligin E. Apolipoprotein E modulates clearance of apoptotic bodies in vitro and in vivo, resulting in a systemic proinflammatory state in apolipoprotein E-deficient mice. J Immunol, 2004; 173, 6366−75. doi:  10.4049/jimmunol.173.10.6366
[28] Santos R, Ursu O, Gaulton A, et al. A comprehensive map of molecular drug targets. Nat Rev Drug Discov, 2017; 16, 19−34. doi:  10.1038/nrd.2016.230
[29] Kim LA, D'Amore PA. A brief history of anti-VEGF for the treatment of ocular angiogenesis. Am J Pathol, 2012; 181, 376−9. doi:  10.1016/j.ajpath.2012.06.006
[30] Ben-Shlomo I, Yu Hsu S, Rauch R, et al. Signaling receptome: a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Sci STKE, 2003; 2003, RE9.
[31] Meyer K, Selbach M. Quantitative affinity purification mass spectrometry: a versatile technology to study protein-protein interactions. Front Genet, 2015; 6, 237.
[32] Li W, Pang IH, Pacheco MTF, et al. Ligandomics: a paradigm shift in biological drug discovery. Drug Discov Today, 2018; 23, 636−43. doi:  10.1016/j.drudis.2018.01.013
[33] Tang F, LeBlanc ME, Wang W, et al. Anti-secretogranin III therapy of oxygen-induced retinopathy with optimal safety. Angiogenesis, 2019; 22, 369−82. doi:  10.1007/s10456-019-09662-4
[34] Gaultier A, Wu X, Le Moan N, et al. Low-density lipoprotein receptor-related protein 1 is an essential receptor for myelin phagocytosis. J Cell Sci, 2009; 122, 1155−62. doi:  10.1242/jcs.040717
[35] Sokolowski JD, Mandell JW. Phagocytic clearance in neurodegeneration. Am J Pathol, 2011; 178, 1416−28. doi:  10.1016/j.ajpath.2010.12.051
[36] Gardai SJ, McPhillips KA, Frasch SC, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell, 2005; 123, 321−34. doi:  10.1016/j.cell.2005.08.032
[37] Caberoy NB, Zhou Y, Li W. Tubby and tubby-like protein 1 are new MerTK ligands for phagocytosis. EMBO J, 2010; 29, 3898−910. doi:  10.1038/emboj.2010.265
[38] Lin Y, Zhao JL, Zheng QJ, et al. Notch Signaling Modulates Macrophage Polarization and Phagocytosis Through Direct Suppression of Signal Regulatory Protein alpha Expression. Front Immunol, 2018; 9, 1744. doi:  10.3389/fimmu.2018.01744
[39] Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev, 2017; 97, 1235−94. doi:  10.1152/physrev.00005.2017
[40] Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer, 2017; 17, 145−59. doi:  10.1038/nrc.2016.145
[41] Shimizu K, Chiba S, Hosoya N, et al. Binding of Delta1, Jagged1, and Jagged2 to Notch2 rapidly induces cleavage, nuclear translocation, and hyperphosphorylation of Notch2. Mol Cell Biol, 2000; 20, 6913−22. doi:  10.1128/MCB.20.18.6913-6922.2000
[42] Rong X, Tian H, Yang L, et al. Function-first ligandomics for ocular vascular research and drug target discovery. Exp Eye Res, 2019; 182, 57−64. doi:  10.1016/j.exer.2019.03.009
[43] Buchholz CJ, Duerner LJ, Funke S, et al. Retroviral display and high throughput screening. Comb Chem High Throughput Screen, 2008; 11, 99−110. doi:  10.2174/138620708783744543