[1] Pacyna JM, Pacyna EG. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ Rev, 2001; 9, 269−98. doi:  10.1139/a01-012
[2] Zhang H, Reynolds M. Cadmium exposure in living organisms: a short review. Sci Total Environ, 2019; 678, 761−7. doi:  10.1016/j.scitotenv.2019.04.395
[3] European Food Safety Authority. Cadmium in food. Scientific opinion of the panel on contaminants in the food chain. EFSA J, 2009; 980, 1−139.
[4] Satarug S, Baker JR, Urbenjapol S, et al. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicol Lett, 2003; 137, 65−83. doi:  10.1016/S0378-4274(02)00381-8
[5] Satarug S, Vesey DA, Gobe GC. Health risk assessment of dietary cadmium intake: do current guidelines indicate how much is safe? Environ Health Perspect, 2017; 125, 284−8. doi:  10.1289/EHP108
[6] Satarug S, Moore MR. Adverse health effects of chronic exposure to low-level cadmium in foodstuffs and cigarette smoke. Environ Health Perspect, 2004; 112, 1099−103. doi:  10.1289/ehp.6751
[7] Sugawara N, Sugawara C. Cadmium accumulation in organs and mortality during a continued oral uptake. Arch Toxicol, 1974; 32, 297−306. doi:  10.1007/BF00330111
[8] Friberg L, Elinder C, Kjellstrom T, et al. Cadmium and health: a toxicological and epidemiological appraisal volume II: effects and response. CRC Press, Taylor & Francis Group, Boca Raton, FL, 1986.
[9] Müller L, Abel J, Ohnesorge FK. Absorption and distribution of cadmium (Cd), copper and zinc following oral subchronic low level administration to rats of different binding forms of cadmium (Cd-acetate, Cd-metallothionein, Cd-glutathione). Toxicology, 1986; 39, 187−95. doi:  10.1016/0300-483X(86)90135-6
[10] Jonah MM, Bhattacharyya MH. Early changes in the tissue distribution of cadmium after oral but not intravenous cadmium exposure. Toxicology, 1989; 58, 325−38. doi:  10.1016/0300-483X(89)90145-5
[11] Saygi S, Deniz G, Kutsal O, et al. Chronic effects of cadmium on kidney, liver, testis, and fertility of male rats. Biol Trace Elem Res, 1991; 31, 209−14. doi:  10.1007/BF02990191
[12] WHO. Environmental Health Criteria 134, Cadmium, first ed. World Health Organization, Geneva, Switzerland, 1992.
[13] US Department of Health and Human Services. Toxicological profile for cadmium. draft for public comment. Agency for Toxic Substances and Disease registry, Atlanta, USA, 1997.
[14] Hiratsuka H, Satoh S, Satoh M, et al. Tissue distribution of cadmium in rats given minimum amounts of cadmium-polluted rice or cadmium chloride for 8 months. Toxicol Appl Pharmacol, 1999; 160, 183−91. doi:  10.1006/taap.1999.8768
[15] Manca D, Ricard AC, Trottier B, et al. Studies on lipid peroxidation in rat tissues following administration of low and moderate doses of cadmium chloride. Toxicology, 1991; 67, 303−23. doi:  10.1016/0300-483X(91)90030-5
[16] Manca D, Ricard AC, Van Tra H, et al. Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium. Arch Toxicol, 1994; 68, 364−9. doi:  10.1007/s002040050083
[17] Kayama F, Yoshida T, Elwell MR, et al. Cadmium-induced renal damage and proinflammatory cytokines: possible role of IL-6 in tubular epithelial cell regeneration. Toxicol Appl Pharmacol, 1995; 134, 26−34. doi:  10.1006/taap.1995.1165
[18] Rikans LE, Yamano T. Mechanisms of cadmium‐mediated acute hepatotoxicity. J Biochem Mol Toxicol, 2000; 14, 110−7. doi:  10.1002/(SICI)1099-0461(2000)14:2<110::AID-JBT7>3.0.CO;2-J
[19] Kataranovski M, Mirkov I, Belij S, et al. Lungs: remote inflammatory target of systemic cadmium administration in rats. Environ Toxicol Pharmacol, 2009; 28, 225−31. doi:  10.1016/j.etap.2009.04.008
[20] Krocova Z, Macela A, Kroca M, et al. The immunomodulatory effect (s) of lead and cadmium on the cells of immune system in vitro. Toxicol In Vitro, 2000; 14, 33−40. doi:  10.1016/S0887-2333(99)00089-2
[21] Hemdan NY, Emmrich F, Sack U, et al. The in vitro immune modulation by cadmium depends on the way of cell activation. Toxicology, 2006; 222, 37−45. doi:  10.1016/j.tox.2006.01.026
[22] Olszowski T, Baranowska-Bosiacka I, Gutowska I, et al. Pro-inflammatory properties of cadmium. Acta Biochim Pol, 2012; 59, 475−82.
[23] Riemschneider S, Herzberg M, Lehmann J. Subtoxic doses of cadmium modulate inflammatory properties of murine RAW 264.7 macrophages. BioMed Res Int, 2015; 2015, 295303.
[24] Nair AR, Degheselle O, Smeets K, et al. Cadmium-induced pathologies: where is the oxidative balance lost (or not)? Int J Mol Sci, 2013; 14, 6116−43. doi:  10.3390/ijms14036116
[25] Stejskalova L, Dvorak Z, Pavek P. Endogenous and exogenous ligands of aryl hydrocarbon receptor: current state of art. Curr Drug Metab, 2011; 12, 198−212. doi:  10.2174/138920011795016818
[26] Wincent E, Bengtsson J, Mohammadi Bardbori A, et al. Inhibition of cytochrome P4501-dependent clearance of the endogenous agonist FICZ as a mechanism for activation of the aryl hydrocarbon receptor. Proc Natl Acad Sci USA, 2012; 109, 4479−84. doi:  10.1073/pnas.1118467109
[27] Mohammadi-Bardbori A, Vikström Bergander L, Rannug U, et al. NADPH oxidase-dependent mechanism explains how arsenic and other oxidants can activate aryl hydrocarbon receptor signaling. Chem Res Toxicol, 2015; 28, 2278−86. doi:  10.1021/acs.chemrestox.5b00415
[28] Wu JP, Chang LW, Yao HT, et al. Involvement of oxidative stress and activation of aryl hydrocarbon receptor in elevation of CYP1A1 expression and activity in lung cells and tissues by arsenic: an in vitro and in vivo study. Toxicol Sci, 2009; 107, 385−93. doi:  10.1093/toxsci/kfn239
[29] Elbekai RH, El-Kadi AO. Modulation of aryl hydrocarbon receptor-regulated gene expression by arsenite, cadmium, and chromium. Toxicology, 2004; 202, 249−69. doi:  10.1016/j.tox.2004.05.009
[30] Anwar-Mohamed A, Elbekai RH, El-Kadi AO. Regulation of CYP1A1 by heavy metals and consequences for drug metabolism. Expert Opin Drug Metab Toxicol, 2009; 5, 501−21. doi:  10.1517/17425250902918302
[31] Korashy HM, El-Kadi AO. Differential effects of mercury, lead and copper on the constitutive and inducible expression of aryl hydrocarbon receptor (AHR)-regulated genes in cultured hepatoma Hepa 1c1c7 cells. Toxicology, 2004; 201, 153−72. doi:  10.1016/j.tox.2004.04.011
[32] Korashy HM, El-Kadi AO. Regulatory mechanisms modulating the expression of cytochrome P450 1A1 gene by heavy metals. Toxicol Sci, 2005; 88, 39−51. doi:  10.1093/toxsci/kfi282
[33] Vakharia DD, Liu N, Pause R, et al. Effect of metals on polycyclic aromatic hydrocarbon induction of CYP1A1 and CYP1A2 in human hepatocyte cultures. Toxicol Appl Pharmacol, 2001; 170, 93−103. doi:  10.1006/taap.2000.9087
[34] Tully DB, Collins BJ, Overstreet JD, et al. Effects of arsenic, cadmium, chromium, and lead on gene expression regulated by a battery of 13 different promoters in recombinant HepG2 cells. Toxicol Appl Pharmacol, 2000; 168, 79−90. doi:  10.1006/taap.2000.9014
[35] Kluxen FM, Höfer N, Kretzschmar G, et al. Cadmium modulates expression of aryl hydrocarbon receptor-associated genes in rat uterus by interaction with the estrogen receptor. Arch Toxicol, 2012; 86, 591−601. doi:  10.1007/s00204-011-0787-x
[36] Kluxen FM, Diel P, Höfer N, et al. The metallohormone cadmium modulates AhR-associated gene expression in the small intestine of rats similar to ethinyl-estradiol. Arch Toxicol, 2013; 87, 633−43. doi:  10.1007/s00204-012-0971-7
[37] Chao HR, Tsou TC, Chen HT, et al. The inhibition effect of 2, 3, 7, 8-tetrachlorinated dibenzo-p-dioxin-induced aryl hydrocarbon receptor activation in human hepatoma cells with the treatment of cadmium chloride. J Hazard Mater, 2009; 170, 351−6. doi:  10.1016/j.jhazmat.2009.04.090
[38] Omidi M, Niknahad H, Noorafshan A, et al. Co-exposure to an aryl hydrocarbon receptor endogenous ligand, 6-formylindolo [3, 2-b] carbazole (FICZ), and cadmium induces cardiovascular developmental abnormalities in mice. Biol Trace Elem Res, 2019; 187, 442−51. doi:  10.1007/s12011-018-1391-1
[39] Tucovic D, Popov Aleksandrov A, Mirkov I, et al. Oral cadmium exposure affects skin immune reactivity in rats. Ecotoxicol Environ Saf, 2018; 164, 12−20. doi:  10.1016/j.ecoenv.2018.07.117
[40] Tucovic D, Mirkov I, Kulas J, et al. Dermatotoxicity of oral cadmium is strain-dependent and related to differences in skin stress response and inflammatory/immune activity. Environ Toxicol Pharmacol, 2020; 75, 103326. doi:  10.1016/j.etap.2020.103326
[41] Kulas J, Ninkov M, Tucovic D, et al. Subchronic oral cadmium exposure exerts both stimulatory and suppressive effects on pulmonary inflammation/immune reactivity in rats. Biomed Environ Sci, 2019; 32, 508−19.
[42] Theocharis SE, Souliotis VL, Panayiotidis PG. Suppression of interleukin-1β and tumour necrosis factor-α biosynthesis by cadmium inin vitro activated human peripheral blood mononuclear cells. Arch Toxicol, 1994; 69, 132−6. doi:  10.1007/s002040050148
[43] Villanueva MBG, Koizumi S, Jonai H. Cytokine production by human peripheral blood mononuclear cells after exposure to heavy metals. J Health Sci, 2000; 46, 358−62. doi:  10.1248/jhs.46.358
[44] Marth E, Jelovcan S, Kleinhappl B, et al. The effect of heavy metals on the immune system at low concentrations. Int J Occup Med Environ Health, 2001; 14, 375−86.
[45] Boscolo P, Di Giampaolo L, Qiao N, et al. Inhibitory effects of cadmium on peripheral blood mononuclear cell proliferation and cytokine release are reversed by zinc and selenium salts. Ann Clin Lab Sci, 2005; 35, 115−20.
[46] Djokic J, Ninkov M, Mirkov I, et al. Differential effects of cadmium administration on peripheral blood granulocytes in rats. Environ Toxicol Pharmacol, 2014; 37, 210−9. doi:  10.1016/j.etap.2013.11.026
[47] Djokic J, Popov Aleksandrov A, Ninkov M, et al. Cadmium administration affects circulatory mononuclear cells in rats. J Immunotoxicol, 2015; 12, 115−23. doi:  10.3109/1547691X.2014.904955
[48] Haarmann-Stemmann T, Bothe H, Abel J. Growth factors, cytokines and their receptors as downstream targets of arylhydrocarbon receptor (AhR) signaling pathways. Biochem Pharmacol, 2009; 77, 508−20. doi:  10.1016/j.bcp.2008.09.013
[49] DiNatale BC, Murray IA, Schroeder JC, et al. Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling. Toxicol Sci, 2010; 115, 89−97. doi:  10.1093/toxsci/kfq024
[50] Vogel CF, Chang WW, Kado S, et al. Transgenic overexpression of aryl hydrocarbon receptor repressor (AhRR) and AhR-mediated induction of CYP1A1, cytokines, and acute toxicity. Environ Health Perspect, 2016; 124, 1071−83. doi:  10.1289/ehp.1510194
[51] Kim SH, Henry EC, Kim DK, et al. Novel compound 2-methyl-2H-pyrazole-3-carboxylic acid (2-methyl-4-o-tolylazo-phenyl)-amide (CH-223191) prevents 2, 3, 7, 8-TCDD-induced toxicity by antagonizing the aryl hydrocarbon receptor. Mol Pharmacol, 2006; 69, 1871−78. doi:  10.1124/mol.105.021832
[52] Bhattacharyya MH, Whelton BD, Peterson DP, et al. Skeletal changes in multiparous mice fed a nutrient-sufficient diet containing cadmium. Toxicology, 1988; 50, 193−204. doi:  10.1016/0300-483X(88)90091-1
[53] Schwartz GG, Reis IM. Is cadmium a cause of human pancreatic cancer? Cancer Epidemiol. Biomarkers Prev, 2000; 9, 139−45.
[54] Wang H, Zhu G, Shi Y, et al. Influence of environmental cadmium exposure on forearm bone density. J Bone Miner Res, 2003; 18, 553−60. doi:  10.1359/jbmr.2003.18.3.553
[55] Anderson ME. Tissue glutathione. In: Greenwald, R.A. (Ed.), handbook of methods for oxygen radical research. CRC Press, Boca Raton, 1986; pp. 317–23.
[56] Walrand S, Valeix S, Rodriguez C, et al. Flow cytometry study of polymorphonuclear neutrophil oxidative burst: a comparison of three fluorescent probes. Clin Chim Acta, 2003; 331, 103−10. doi:  10.1016/S0009-8981(03)00086-X
[57] Huai W, Zhao R, Song H, et al. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat Commun, 2014; 5, 1−9.
[58] Demenesku J, Aleksandrov AP, Mirkov I, et al. Strain differences of cadmium-induced toxicity in rats: Insight from spleen and lung immune responses. Toxicol Lett, 2016; 256, 33−43. doi:  10.1016/j.toxlet.2016.05.022
[59] Ninkov M, Popov Aleksandrov A, Mirkov I, et al. Strain differences in toxicity of oral cadmium intake in rats. Food Chem Toxicol, 2016; 96, 11−23. doi:  10.1016/j.fct.2016.07.021
[60] Prozialeck WC, Grunwald GB, Dey PM, et al. Cadherins and NCAM as potential targets in metal toxicity. Toxicol Appl Pharmacol, 2002; 182, 255−65. doi:  10.1006/taap.2002.9422
[61] Chakraborty PK, Lee WK, Molitor M, et al. Cadmium induces Wnt signaling to upregulate proliferation and survival genes in sub-confluent kidney proximal tubule cells. Mol Cancer, 2010; 9, 102. doi:  10.1186/1476-4598-9-102
[62] Rosenberg DW, Kappas A. Induction of heme oxygenase in the small intestinal epithelium: a response to oral cadmium exposure. Toxicology, 1991; 67, 199−210. doi:  10.1016/0300-483X(91)90143-O
[63] Iscan M, Çoban T, Eke BC. Responses of hepatic xenobiotic metabolizing enzymes of mouse, rat and guinea‐pig to nickel. Pharmacol Toxicol, 1992; 71, 434−42. doi:  10.1111/j.1600-0773.1992.tb00574.x
[64] Wagstaff DD. Stimulation of liver detoxication enzymes by dietary cadmium acetate. Bull Environ Contam Toxicol, 1973; 10, 328−32. doi:  10.1007/BF01720998
[65] Eaton DL, Stacey NH, Wong KL, et al. Dose-response effects of various metal ions on rat liver metallothionein, glutathione, heme oxygenase, and cytochrome P-450. Toxicol Appl Pharmacol, 1980; 55, 393−402. doi:  10.1016/0041-008X(80)90101-5
[66] Anjum F, Raman A, Shakoori AR, et al. An assessment of cadmium toxicity on cytochrome P-450 and flavin monooxygenase-mediated metabolic pathways of dimethylaniline in male rabbits. J Environ Pathol Toxicol Oncol, 1992; 11, 191−5.
[67] Dohr O, Vogel C, Abel J. Different response of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-sensitive genes in human breast cancer MCF-7 and MDA-MB 231 cells. Arch Biochem Biophys, 1995; 321, 405−12. doi:  10.1006/abbi.1995.1411
[68] Kress S, Greenlee WF. Cell-specific regulation of human CYP1A1 and CYP1B1 genes. Cancer Res, 1997; 57, 1264−9.
[69] Zordoky BN, El-Kadi AO. Role of NF-κB in the regulation of cytochrome P450 enzymes. Curr Drug Metab, 2009; 10, 164−78. doi:  10.2174/138920009787522151
[70] Santes-Palacios R, Ornelas-Ayala D, Cabañas N, et al. Regulation of human cytochrome P4501A1 (hCYP1A1): a plausible target for chemoprevention? Biomed Res Int, 2016; 2016, 5341081.
[71] Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol, 2009; 238, 209−14. doi:  10.1016/j.taap.2009.01.029
[72] Jensen BA, Leeman RJ, Schlezinger JJ, et al. Aryl hydrocarbon receptor (AhR) agonists suppress interleukin-6 expression by bone marrow stromal cells: an immunotoxicology study. Environ. Health, 2003; 2, 16. doi:  10.1186/1476-069X-2-16
[73] Tanaka Y, Uchi H, Hashimoto-Hachiya A, et al. Tryptophan photoproduct FICZ upregulates IL1A, IL1B, and IL6 expression via oxidative stress in keratinocytes. Oxid Med Cell Longev, 2018; 2018, 9298052.
[74] Sibilano R, Frossi B, Calvaruso M, et al. The aryl hydrocarbon receptor modulates acute and late mast cell responses. J Immunol, 2012; 189, 120−7. doi:  10.4049/jimmunol.1200009
[75] Cheon HJ, Woo YS, Lee JY, et al. Signaling pathway for 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced TNF-α production in differentiated THP-1 human macrophages. Exp Mol Med, 2007; 39, 524−34. doi:  10.1038/emm.2007.58
[76] Wong PS, Vogel CF, Kokosinski K, et al. Arylhydrocarbon receptor activation in NCI-H441 cells and C57BL/6 mice: possible mechanisms for lung dysfunction. Am J Respir Cell Mol Biol, 2010; 42, 210−7. doi:  10.1165/rcmb.2008-0228OC
[77] Vogel CFA, Ishihara Y, Campbell CE, et al. A protective role of aryl hydrocarbon receptor repressor in inflammation and tumor growth. Cancers, 2019; 11, e589. doi:  10.3390/cancers11050589
[78] Dalton TP, Puga A, Shertzer HG. Induction of cellular oxidative stress by aryl hydrocarbon receptor activation. Chem Biol Interact, 2002; 141, 77−95. doi:  10.1016/S0009-2797(02)00067-4
[79] Nohara K, Ao K, Miyamoto Y, et al. Comparison of the 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD)-induced CYP1A1 gene expression profile in lymphocytes from mice, rats, and humans: most potent induction in humans. Toxicology, 2006; 225, 204−13. doi:  10.1016/j.tox.2006.06.005
[80] Jamsa T, Viluksela M, Tuomisto JT, et al. Effects of 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin on bone in two rat strains with different aryl hydrocarbon receptor structures. J Bone Miner Res, 2001; 16, 1812−20. doi:  10.1359/jbmr.2001.16.10.1812
[81] Nishiyama Y, Nakayama SM, Watanabe KP, et al. Strain differences in cytochrome P450 mRNA and protein expression, and enzymatic activity among Sprague Dawley, Wistar, Brown Norway and Dark Agouti rats. J Vet Med Sci, 2016; 78, 675−80. doi:  10.1292/jvms.15-0299