[1] WHO. Global tuberculosis report 2019. Geneva: World Health Organization, 2019.
[2] De Rycker M, Baragaña B, Duce SL, et al. Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018; 559, 498−506. doi:  10.1038/s41586-018-0327-4
[3] Abdallah AM, Behr MA. Evolution and strain variation in BCG. In: Gagneux S. Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology. Springer, 2017, 155-69.
[4] Stallinger H, Kolleritsch H. BCG-vaccination and its complications. How great are the benefits of vaccination today? Klin Padiatr, 1990; 202, 308−14. doi:  10.1055/s-2007-1025537
[5] Chen SS, Xu YJ, Xiao SQ, et al. Analysis on human T cell epitopes polymorphisms of five specific antigens of Mycobacterium tuberculosis in 13 areas of China. Chin J Epidemiol, 2016; 37, 553−7. (In Chinese
[6] Ginsberg AM. Designing tuberculosis vaccine efficacy trials-lessons from recent studies. Expert Rev Vaccines, 2019; 18, 423−32. doi:  10.1080/14760584.2019.1593143
[7] Jiang Y, Liu HC, Qiu Y, et al. Polymorphisms of FtsK/SpoIIIE protein in Mycobacterium tuberculosis complex strains may affect both protein function and host immune reaction. Int J Clin Exp Med, 2014; 7, 5385−93.
[8] Jiang Y, Liu HC, Dou XF, et al. Polymorphisms of human T cell epitopes of Mycobacterium tuberculosis indicate divergence of host immune pressure on different categories of proteins. Life Sci, 2018; 209, 388−94. doi:  10.1016/j.lfs.2018.08.040
[9] Xiao TY, Liu HC, Li XQ, et al. Immunological evaluation of a novel Mycobacterium tuberculosis antigen Rv0674. Biomed Environ Sci, 2019; 32, 427−37.
[10] Wang XZ, Chen SS, Xu YJ, et al. Identification and evaluation of the novel immunodominant antigen Rv2351c from Mycobacterium tuberculosis. Emerg Microbes Infect, 2017; 6, e48.
[11] Jiang Y, Liu HC, Wang XZ, et al. Genetic diversity of immune-related antigens in region of difference 2 of Mycobacterium tuberculosis strains. Tuberculosis (Edinb), 2017; 104, 1−7. doi:  10.1016/j.tube.2016.05.002
[12] Bourinbaiar AS, Batbold U, Efremenko Y, et al. Phase III, placebo-controlled, randomized, double-blind trial of tableted, therapeutic TB vaccine (V7) containing heat-killed M. vaccae administered daily for one month. J Clin Tuberc Other Mycobact Dis, 2020; 18, 100141. doi:  10.1016/j.jctube.2019.100141
[13] Waddell RD, Chintu C, Lein AD, et al. Safety and immunogenicity of a five-dose series of inactivated Mycobacterium vaccae vaccination for the prevention of HIV-associated tuberculosis. Clin Infect Dis, 2000; 30, S309−15. doi:  10.1086/313880
[14] Feng ZH, Bai XY, Wang T, et al. Differential responses by human macrophages to infection with Mycobacterium tuberculosis and non-tuberculous mycobacteria. Front Microbiol, 2020; 11, 116.
[15] Camus JC, Pryor MJ, Médigue C, et al. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology (Reading), 2002; 148, 2967−73. doi:  10.1099/00221287-148-10-2967
[16] Gao L, Li XW, Liu JM, et al. Incidence of active tuberculosis in individuals with latent tuberculosis infection in rural China: follow-up results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis, 2017; 17, 1053−61. doi:  10.1016/S1473-3099(17)30402-4
[17] Salgame P, Geadas C, Collins L, et al. Latent tuberculosis infection-revisiting and revising concepts. Tuberculosis (Edinb), 2015; 95, 373−84.
[18] Simmons JD, Stein CM, Seshadri C, et al. Immunological mechanisms of human resistance to persistent Mycobacterium tuberculosis infection. Nat Rev Immunol, 2018; 18, 575−89. doi:  10.1038/s41577-018-0025-3
[19] Liu CH, Liu HY, Ge BX. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol, 2017; 14, 963−75. doi:  10.1038/cmi.2017.88
[20] Liu WB, Li JJ, Niu HX, et al. Immunogenicity and protective efficacy of multistage vaccine candidates (Mtb8.4-HspX and HspX-Mtb8.4) against Mycobacterium tuberculosis infection in mice. Int Immunopharmacol, 2017; 53, 83−9. doi:  10.1016/j.intimp.2017.10.015
[21] Yuan XF, Teng XD, Jing YK, et al. A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl Microbiol Biotechnol, 2015; 99, 10587−95. doi:  10.1007/s00253-015-6962-x
[22] Yuan W, Dong N, Zhang LF, et al. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine expressing a fusion protein of Ag85B-Esat6-HspX in mice. Vaccine, 2012; 30, 2490−7. doi:  10.1016/j.vaccine.2011.06.029
[23] Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med, 2011; 17, 189−94. doi:  10.1038/nm.2285
[24] Bertholet S, Ireton GC, Ordway DJ, et al. A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med, 2010; 2, 53ra74.
[25] Karbalaei Zadeh Babaki M, Soleimanpour S, Rezaee SA. Antigen 85 complex as a powerful Mycobacterium tuberculosis immunogene: biology, immune-pathogenicity, applications in diagnosis, and vaccine design. Microb Pathog, 2017; 112, 20−9. doi:  10.1016/j.micpath.2017.08.040
[26] Panigada M, Sturniolo T, Besozzi G, et al. Identification of a promiscuous T-cell epitope in Mycobacterium tuberculosis Mce proteins. Infect Immun, 2002; 70, 79−85. doi:  10.1128/IAI.70.1.79-85.2002
[27] Lahey T, Laddy D, Hill K, et al. Immunogenicity and protective efficacy of the DAR-901 booster vaccine in a murine model of tuberculosis. PLoS One, 2016; 11, e0168521. doi:  10.1371/journal.pone.0168521
[28] Vuola JM, Ristola MA, Cole B, et al. Immunogenicity of an inactivated mycobacterial vaccine for the prevention of HIV-associated tuberculosis: a randomized, controlled trial. AIDS, 2003; 17, 2351−5. doi:  10.1097/00002030-200311070-00010
[29] von Reyn CF, Mtei L, Arbeit RD, et al. Prevention of tuberculosis in Bacille Calmette-Guérin-primed, HIV-infected adults boosted with an inactivated whole-cell mycobacterial vaccine. AIDS, 2010; 24, 675−85. doi:  10.1097/QAD.0b013e3283350f1b
[30] Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-γ-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med, 1996; 335, 1956−61. doi:  10.1056/NEJM199612263352604
[31] Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-γ-receptor gene and susceptibility to mycobacterial infection. N Engl J Med, 1996; 335, 1941−9. doi:  10.1056/NEJM199612263352602
[32] Lahey T, Sheth S, Matee M, et al. Interferon γ responses to mycobacterial antigens protect against subsequent HIV-associated tuberculosis. J Infect Dis, 2010; 202, 1265−72. doi:  10.1086/656332
[33] Lahey T, Mitchell BK, Arbeit RD, et al. Polyantigenic interferon-γ responses are associated with protection from TB among HIV-infected adults with childhood BCG immunization. PLoS One, 2011; 6, e22074. doi:  10.1371/journal.pone.0022074
[34] Jasenosky LD, Scriba TJ, Hanekom WA, et al. T cells and adaptive immunity to Mycobacterium tuberculosis in humans. Immunol Rev, 2015; 264, 74−87. doi:  10.1111/imr.12274
[35] Lewinsohn DA, Lewinsohn DM, Scriba TJ. Polyfunctional CD4+ T cells as targets for tuberculosis vaccination. Front Immunol, 2017; 8, 1262. doi:  10.3389/fimmu.2017.01262
[36] Dalvi SM, Ramraje NN, Patil VW, et al. Study of IL-6 and vitamin D3 in patients of pulmonary tuberculosis. Indian J Tuberc, 2019; 66, 337−45. doi:  10.1016/j.ijtb.2018.05.018
[37] Leal IS, Flórido M, Andersen P, et al. Interleukin-6 regulates the phenotype of the immune response to a tuberculosis subunit vaccine. Immunology, 2001; 103, 375−81. doi:  10.1046/j.1365-2567.2001.01244.x
[38] Jung BG, Wang XS, Yi N, et al. Early secreted antigenic target of 6-kDa of Mycobacterium tuberculosis stimulates IL-6 production by macrophages through activation of STAT3. Sci Rep, 2017; 7, 40984. doi:  10.1038/srep40984
[39] Martínez-Barricarte R, Markle JG, Ma CS, et al. Human IFN-γ immunity to mycobacteria is governed by both IL-12 and IL-23. Sci Immunol, 2018; 3, eaau6759. doi:  10.1126/sciimmunol.aau6759
[40] Mawatwal S, Behura A, Mishra A, et al. Calcimycin induced IL-12 production inhibits intracellular mycobacterial growth by enhancing autophagy. Cytokine, 2018; 111, 1−2. doi:  10.1016/j.cyto.2018.07.033
[41] Li QF, Zhang H, Yu L, et al. Down-regulation of Notch signaling pathway reverses the Th1/Th2 imbalance in tuberculosis patients. Int Immunopharmacol, 2018; 54, 24−32. doi:  10.1016/j.intimp.2017.10.026
[42] Rook GAW, Hernandez-Pando R, Dheda K, et al. IL-4 in tuberculosis: implications for vaccine design. Trends Immunol, 2004; 25, 483−8. doi:  10.1016/j.it.2004.06.005
[43] Abebe F. Synergy between Th1 and Th2 responses during Mycobacterium tuberculosis infection: a review of current understanding. Int Rev Immunol, 2019; 38, 172−9. doi:  10.1080/08830185.2019.1632842
[44] Chan J, Mehta S, Bharrhan S, et al. The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Semin Immunol, 2014; 26, 588−600. doi:  10.1016/j.smim.2014.10.005
[45] Khademi F, Yousefi A, Derakhshan M, et al. Enhancing immunogenicity of novel multistage subunit vaccine of Mycobacterium tuberculosis using PLGA: DDA hybrid nanoparticles and MPLA: subcutaneous administration. Iran J Basic Med Sci, 2019; 22, 893−900.
[46] Upadhyay S, Mittal E, Philips JA. Tuberculosis and the art of macrophage manipulation. Pathog Dis, 2018; 76, fty037.
[47] de Martino M, Lodi L, Galli L, et al. Immune response to Mycobacterium tuberculosis: a narrative review. Front Pediatr, 2019; 7, 350. doi:  10.3389/fped.2019.00350
[48] Hmama Z, Peña-Díaz S, Joseph S, et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015; 264, 220−32. doi:  10.1111/imr.12268