[1] Lodha R, Kabra SK, Pandey RM. Antibiotics for community-acquired pneumonia in children. Cochrane Database Syst Rev, 2013. https://doi.org/10.1002/14651858.CD004874.pub4. [2013-6-4].
[2] Ruuskanen O, Lahti E, Jennings LC, et al. Viral pneumonia. Lancet, 2011; 377, 1264−75.
[3] Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012; 380, 2095−128.
[4] Arancibia F, Bauer TT, Ewig S, et al. Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa-Incidence, risk, and prognosis. Archives Int Med, 2002; 162, 1849−58.
[5] Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis, 2010; 51, S81−7.
[6] Niederman MS, Mandell LA, Anzueto A, et al. Guidelines for the management of adults with community-acquired pneumonia. Diagnosis, assessment of severity, antimicrobial therapy, and prevention. Am J Respir Crit Care Med, 2001; 163, 1730−54.
[7] Sopena N, Sabrià M, Neunos 2000 Study Group. Multicenter study of hospital-acquired pneumonia in non-ICU patients. Chest, 2005; 127, 213−9.
[8] Thomas V, Herrera-Rimann K, Blanc DS, et al. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol, 2006; 72, 2428−38.
[9] Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA, 2016; 113, 5970−5.
[10] Bodor A, Bounedjoum N, Vincze GE, et al. Challenges of unculturable bacteria: environmental perspectives. Rev Environ Sci Bio/Technol, 2020; 19, 1−22.
[11] Duquenne P. On the identification of culturable microorganisms for the assessment of biodiversity in bioaerosols. Ann Work Expo Health, 2018; 62, 139−46.
[12] Jin Q, Yuan ZH, Xu JG, et al. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res, 2002; 30, 4432−41. doi:  10.1093/nar/gkf566
[13] Li SM, Wu ZZ, Liu GQ. Degradation kinetics of toilet paper fiber during wastewater treatment: effects of solid retention time and microbial community. Chemosphere, 2019; 225, 915−26. doi:  10.1016/j.chemosphere.2019.03.097
[14] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014; 30, 2114−20. doi:  10.1093/bioinformatics/btu170
[15] Guo JG, Xiong Y, Kang TS, et al. Bacterial community analysis of floor dust and HEPA filters in air purifiers used in office rooms in ILAS, Beijing. Scientific Reports, 2020; 10, 6417. doi:  10.1038/s41598-020-63543-1
[16] Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013; 10, 996−998. doi:  10.1038/nmeth.2604
[17] Kimura M. Estimation of evolutionary distances between homologous nucleotide sequences. Proc Natl Acad Sci USA, 1981; 78, 454−8. doi:  10.1073/pnas.78.1.454
[18] Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol, 1993; 10, 512−26.
[19] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011; 28, 2731−9. doi:  10.1093/molbev/msr121
[20] Matsuoka K, Uemura Y, Kanai T, et al. Efficacy of Bifidobacterium breve fermented milk in maintaining remission of ulcerative colitis. Dig Dis Sci, 2018; 63, 1910−9. doi:  10.1007/s10620-018-4946-2
[21] Ren JJ, Zhao Y, Huang S, et al. Immunomodulatory effect of Bifidobacterium breve on experimental allergic rhinitis in BALB/c mice. Exp Ther Med, 2018; 16, 3996−4004.
[22] Al-Sheraji SH, Amin I, Azlan A, et al. Effects of Bifidobacterium longum BB536 on lipid profile and histopathological changes in hypercholesterolaemic rats. Benef Microbes, 2015; 6, 661−8. doi:  10.3920/BM2014.0032
[23] Margulies M, Egholm M, Altman WE, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature, 2005; 437, 376−80. doi:  10.1038/nature03959
[24] Guo JG, Xiong Y, Shi CH, et al. Characteristics of airborne bacterial communities in indoor and outdoor environments during continuous haze events in Beijing: implications for health care. Environ Int, 2020; 139, 105721. doi:  10.1016/j.envint.2020.105721
[25] Borsa N, Di Pasquale M, Restrepo MI. Animal models of Pneumococcal pneumonia. Int J Mol Sci, 2019; 20, 4220. doi:  10.3390/ijms20174220
[26] Anand N, Kollef MH. The alphabet soup of pneumonia: CAP, HAP, HCAP, NHAP, and VAP. Semin Respir Crit Care Med, 2009; 30, 3−9. doi:  10.1055/s-0028-1119803
[27] Huffnagle GB, Dickson RP, Lukacs NW. The respiratory tract microbiome and lung inflammation: a two-way street. Mucosal Immunol, 2017; 10, 299−306. doi:  10.1038/mi.2016.108
[28] Kim KH, Kabir E, Jahan SA. Airborne bioaerosols and their impact on human health. J Environ Sci, 2018; 67, 23−35. doi:  10.1016/j.jes.2017.08.027
[29] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev, 1995; 59, 143−69. doi:  10.1128/MMBR.59.1.143-169.1995
[30] Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol, 2002; 68, 3878−85. doi:  10.1128/AEM.68.8.3878-3885.2002
[31] Eduarda W, Heederik D. Methods for quantitative assessment of airborne levels of noninfectious microorganisms in highly contaminated work environments. Am Ind Hyg Assoc J, 1998; 59, 113−27. doi:  10.1080/15428119891010370
[32] D'Arcy N, Canales M, Spratt DA, et al. Healthy schools: standardisation of culturing methods for seeking airborne pathogens in bioaerosols emitted from human sources. Aerobiologia, 2012; 28, 413−22. doi:  10.1007/s10453-012-9251-5
[33] Ortega N, Caro MR, Gallego MC, et al. Isolation of Chlamydia abortus from a laboratory worker diagnosed with atypical pneumonia. Ir Vet J, 2016; 69, 8.
[34] Casas L, Tischer C, Wouters IM, et al. Endotoxin, extracellular polysaccharides, and β(1-3)-glucan concentrations in dust and their determinants in four European birth cohorts: results from the HITEA project. Indoor Air, 2013; 23, 208−18. doi:  10.1111/ina.12017
[35] Sordillo JE, Alwis UK, Hoffman E, et al. Home characteristics as predictors of bacterial and fungal microbial biomarkers in house dust. Environ Health Perspect, 2011; 119, 189−95. doi:  10.1289/ehp.1002004
[36] Johansson E, Vesper S, Levin L, et al. Streptomycetes in house dust: associations with housing characteristics and endotoxin. Indoor Air, 2011; 21, 300−10. doi:  10.1111/j.1600-0668.2010.00702.x
[37] Frankel M, Bekö G, Timm M, et al. Seasonal variations of indoor microbial exposures and their relation to temperature, relative humidity, and air exchange rate. Appl Environ Microbiol, 2012; 78, 8289−97. doi:  10.1128/AEM.02069-12