[1] Plastics Europe. Plastics - the facts 2019 - an analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2019-Plastics-the-facts.pdf. [2022-10-26]
[2] Lusher AL, Tirelli V, O'Connor I, et al. Microplastics in arctic polar waters: the first reported values of particles in surface and sub-surface samples. Sci Rep, 2015; 5, 14947. doi:  10.1038/srep14947
[3] Ivar do Sul JA, Costa MF, Barletta M, et al. Pelagic microplastics around an archipelago of the Equatorial Atlantic. Mar Pollut Bull, 2013; 75, 305−9. doi:  10.1016/j.marpolbul.2013.07.040
[4] Farrell P, Nelson K. Trophic level transfer of microplastic: Mytilus edulis (L. ) to Carcinus maenas (L. ). Environ Pollut, 2013; 177, 1−3. doi:  10.1016/j.envpol.2013.01.046
[5] Von Moos N, Burkhardt-Holm P, Köhler A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol, 2012; 46, 11327−35. doi:  10.1021/es302332w
[6] Li JN, Yang DQ, Li L, et al. Microplastics in commercial bivalves from China. Environ Pollut, 2015; 207, 190−5. doi:  10.1016/j.envpol.2015.09.018
[7] Mathalon A, Hill P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull, 2014; 81, 69−79. doi:  10.1016/j.marpolbul.2014.02.018
[8] Cox KD, Covernton GA, Davies HL, et al. Human consumption of microplastics. Environ Sci Technol, 2019; 53, 7068−74. doi:  10.1021/acs.est.9b01517
[9] Kosuth M, Mason SA, Wattenberg EV. Anthropogenic contamination of tap water, beer, and sea salt. PLoS One, 2018; 13, e0194970. doi:  10.1371/journal.pone.0194970
[10] Kutralam-Muniasamy G, Pérez-Guevara F, Elizalde-Martínez I, et al. Branded milks - are they immune from microplastics contamination? Sci Total Environ, 2020; 714, 136823.
[11] Yang DQ, Shi HH, Li L, et al. Microplastic pollution in table salts from China. Environ Sci Technol, 2015; 49, 13622−7. doi:  10.1021/acs.est.5b03163
[12] Guterres SS, Alves MP, Pohlmann AR. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights, 2007; 2, 147−57.
[13] Fendall LS, Sewell MA. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull, 2009; 58, 1225−8. doi:  10.1016/j.marpolbul.2009.04.025
[14] Barría C, Brandts I, Tort L, et al. Effect of nanoplastics on fish health and performance: a review. Mar Pollut Bull, 2020; 151, 110791. doi:  10.1016/j.marpolbul.2019.110791
[15] Jin YX, Lu L, Tu WQ, et al. Impacts of polystyrene microplastic on the gut barrier, microbiota and metabolism of mice. Sci Total Environ, 2019; 649, 308−17. doi:  10.1016/j.scitotenv.2018.08.353
[16] Lu L, Wan ZQ, Luo T, et al. Polystyrene microplastics induce gut microbiota dysbiosis and hepatic lipid metabolism disorder in mice. Sci Total Environ, 2018; 631−632,449-58.
[17] Deng YF, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci Rep, 2017; 7, 46687. doi:  10.1038/srep46687
[18] Xie XM, Deng T, Duan JF, et al. Exposure to polystyrene microplastics causes reproductive toxicity through oxidative stress and activation of the p38 MAPK signaling pathway. Ecotoxicol Environ Saf, 2020; 190, 110133. doi:  10.1016/j.ecoenv.2019.110133
[19] Luo T, Zhang Y, Wang CY, et al. Maternal exposure to different sizes of polystyrene microplastics during gestation causes metabolic disorders in their offspring. Environ Pollut, 2019; 255, 113122. doi:  10.1016/j.envpol.2019.113122
[20] Schirinzi GF, Pérez-Pomeda I, Sanchís J, et al. Cytotoxic effects of commonly used nanomaterials and microplastics on cerebral and epithelial human cells. Environ Res, 2017; 159, 579−87. doi:  10.1016/j.envres.2017.08.043
[21] Wang FJ, Bexiga MG, Anguissola S, et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale, 2013; 5, 10868−76. doi:  10.1039/c3nr03249c
[22] Mattsson K, Johnson EV, Malmendal A, et al. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep, 2017; 7, 11452. doi:  10.1038/s41598-017-10813-0
[23] EFSA panel on contaminants in the food chain (CONTAM). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J, 2016; 14, e04501.
[24] Jani P, Halbert GW, Langridge J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol, 1990; 42, 821−6.
[25] Stock V, Böhmert L, Lisicki E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Arch Toxicol, 2019; 93, 1817−33. doi:  10.1007/s00204-019-02478-7
[26] Xu DH, Ma YH, Han XD, et al. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J Hazard Mater, 2021; 417, 126092. doi:  10.1016/j.jhazmat.2021.126092
[27] Johnston H, Pojana G, Zuin S, et al. Engineered nanomaterial risk. Lessons learnt from completed nanotoxicology studies: potential solutions to current and future challenges. Crit Rev Toxicol, 2013; 43, 1−20.
[28] Schür C, Rist S, Baun A, et al. When fluorescence is not a particle: the tissue translocation of microplastics in Daphnia magna seems an artifact. Environ Toxicol Chem, 2019; 38, 1495−503. doi:  10.1002/etc.4436
[29] Cau A, Avio CG, Dessì C, et al. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea. Environ Sci Technol, 2020; 54, 4886−92. doi:  10.1021/acs.est.9b07705
[30] Meng FF, Wang JP, Ping QN, et al. Quantitative assessment of nanoparticle biodistribution by fluorescence imaging, revisited. ACS Nano, 2018; 12, 6458−68. doi:  10.1021/acsnano.8b02881
[31] Tartaro K, VanVolkenburg M, Wilkie D, et al. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat. J Immunotoxicol, 2015; 12, 239−46. doi:  10.3109/1547691X.2014.934976
[32] Kunda NK, Price DN, Muttil P. Respiratory tract deposition and distribution pattern of microparticles in mice using different pulmonary delivery techniques. Vaccines (Basel), 2018; 6, 41. doi:  10.3390/vaccines6030041
[33] McConnell EL, Basit AW, Murdan S. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol, 2008; 60, 63−70.
[34] Lankveld DPK, Oomen AG, Krystek P, et al. The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials, 2010; 31, 8350−61. doi:  10.1016/j.biomaterials.2010.07.045
[35] Li JY, Yu ZX, Han B, et al. Activation of the gpx4/tlr4 signaling pathway participates in the alleviation of selenium yeast on deltamethrin-provoked cerebrum injury in quails. Mol Neurobiol, 2022; 59, 2946−61. doi:  10.1007/s12035-022-02744-3
[36] Rossi G, Barnoud J, Monticelli L. Polystyrene nanoparticles perturb lipid membranes. J Phys Chem Lett, 2014; 5, 241−6. doi:  10.1021/jz402234c
[37] Li SY, Han B, Wu PF, et al. Effect of inorganic mercury exposure on reproductive system of male mice: immunosuppression and fibrosis in testis. Environ Toxicol, 2022; 37, 69−78. doi:  10.1002/tox.23378