[1] WHO. Disease outbreak news (DONs). http://www.who.int/csr/don/en/.[2016-11-30]
[2] Swayne DE. Impact of vaccines and vaccination on global control of avian influenza. Avian Dis, 2012; 56, 818-28. doi:  10.1637/10183-041012-Review.1
[3] Si Y, de Boer WF, Gong P. Different environmental drivers of highly pathogenic avian influenza H5N1 outbreaks in poultry and wild birds. PLos One, 2013; 8, e53362. doi:  10.1371/journal.pone.0053362
[4] Yang P, Dongmei, Wang C, et al. Characterization of a highly pathogenic avian influenza H5N1 virus isolated from an ostrich. Biochem Biophys Res Commun, 2010; 396, 973-7. doi:  10.1016/j.bbrc.2010.05.035
[5] Zhao D, Liang L, Li Y, et al. Phylogenetic and pathogenic analyses of avian influenza A H5N1 viruses isolated from poultry in Vietnam. PLoS One, 2012; 7, e50959. doi:  10.1371/journal.pone.0050959
[6] Bi Y, Chen J, Zhang Z, et al. Highly pathogenic avian influenza H5N1 Clade 2.3.2.1c virus in migratory birds, 2014-2015. Virol Sin, 2016; 31, 300-5. doi:  10.1007/s12250-016-3750-4
[7] Belser JA, Gustin KM, Pearce MB, et al. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature, 2013; 501, 556-9. doi:  10.1038/nature12391
[8] Yu X, Jin T, Cui Y, et al. Influenza H7N9 and H9N2 viruses:coexistence in poultry linked to human H7N9 infection and genome characteristics. J Virol, 2014; 88, 3423-31. doi:  10.1128/JVI.02059-13
[9] Tosh C, Nagarajan S, Murugkar HV, et al. Emergence of Val27Ala mutation in M2 protein associated with amantadine resistance in highly pathogenic avian influenza H5N1 viruses in India. Acta Virol, 2014; 58, 389-92. doi:  10.4149/av_2014_04_389
[10] Mossad SB. Influenza:Still more important than Zika virus in 2016-2017. Cleve Clin J Med, 2016; 83, 836-40. doi:  10.3949/ccjm.83a.16105