[1] Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism:focus on astrocyte-neuron metabolic cooperation. Cell Metab, 2011; 14, 724-38. doi:  10.1016/j.cmet.2011.08.016
[2] Choudhury GR, Winters A, Rich RM, et al. Methylene blue protects astrocytes against glucose oxygen deprivation by improving cellular respiration. PloS One, 2015; 10, e0123096. doi:  10.1371/journal.pone.0123096
[3] Petzold GC, Murthy VN. Role of astrocytes in neurovascular coupling. Neuron, 2011; 71, 782-97. doi:  10.1016/j.neuron.2011.08.009
[4] Köles L, Kató E, Hanuska A, et al. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules:interplay between purinergic and glutamatergic systems. Purinergic Signal, 2015; 12, 1-24. https://www.researchgate.net/publication/283543859_Modulation_of_excitatory_neurotransmission_by_neuronalglial_signalling_molecules_interplay_between_purinergic_and_glutamatergic_systems
[5] Kreft M, Bak LK, Waagepetersen HS, et al. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro, 2012; 4, AN20120007. doi:  10.1042/AN20120007
[6] Stobart JL, Anderson CM. Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Front Cell Neurosci, 2014; 7, 38. http://www.sigmaaldrich.com/catalog/papers/23596393
[7] Di Malta C, Fryer JD, Settembre C, et al. Astrocyte dysfunction triggers neurodegeneration in a lysosomal storage disorder. Proc Natl Acad Sci USA, 2012; 109, E2334-E42. doi:  10.1073/pnas.1209577109
[8] Golubeva AV, Moloney RD, O'connor RM, et al. Metabotropic Glutamate Receptors in Central Nervous System Diseases. Curr Drug Targets, 2016; 17, 538-616. doi:  10.2174/1389450116666150316224011
[9] Kou T, Foster JB, Lin CLG. Glutamate transporter EAAT2:regulation, function, and potential as a therapeutic target for neurological and psychiatric disease. Cell Mol Life Sci, 2015; 72, 3489-506. doi:  10.1007/s00018-015-1937-8
[10] Azarias G, Perreten H, Lengacher S, et al. Glutamate transport decreases mitochondrial pH and modulates oxidative metabolism in astrocytes. J Neurosci, 2011; 31, 3550-9. doi:  10.1523/JNEUROSCI.4378-10.2011
[11] Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis:a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA, 1994; 91, 10625-29. doi:  10.1073/pnas.91.22.10625
[12] Mccarthy KD, De Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol, 1980; 85, 890-902. doi:  10.1083/jcb.85.3.890
[13] Shi ZF, Zhao WJ, Xu LX, et al. Downregulation of Aquaporin 4 Expression through Extracellular Signal-regulated Kinases1/3 Activation in Cultured Astrocytes Following Scratch-injury. Biomed Environ Sci, 2015; 28, 199-205. http://www.cnki.com.cn/Article/CJFDTotal-SWYX201503004.htm
[14] Matsui K, Jahr CE, Rubio ME. High-concentration rapid transients of glutamate mediate neural-glial communication via ectopic release. J Neurosci, 2005; 25, 7538-47. doi:  10.1523/JNEUROSCI.1927-05.2005
[15] Meldrum BS. Glutamate as a neurotransmitter in the brain:Review of physiology and pathology. J Nutr, 2000; 130, 1007S-15S. https://www.researchgate.net/publication/12580625_Glutamate_as_a_neurotransmitter_in_the_brain_Review_of_physiology_and_pathology?ev=auth_pub
[16] Kritis AA, Stamoula EG, Paniskaki KA, et al. Researching glutamate-induced cytotoxicity in different cell lines:a comparative/collective analysis/study. Front Cell Neurosci, 2015; 9, 91. https://www.researchgate.net/publication/273956066_Researching_glutamate_-_induced_cytotoxicity_in_different_cell_lines_A_comparativecollective_analysisstudy
[17] Cong L, Cao C, Cheng Y, et al. Green tea polyphenols attenuated glutamate excitotoxicity via antioxidative and antiapoptotic pathway in the primary cultured cortical neurons. Oxid Med Cell Longev, 2016; 2016, 2050435.
[18] Yin WY, Ye Q, Huang HJ, et al. Salidroside protects cortical neurons against glutamate-induced cytotoxicity by inhibiting autophagy. Mol Cell Biochem, 2016; 419, 53-64. doi:  10.1007/s11010-016-2749-3
[19] Shen Y, Tian Y, Shi X, et al. Exposure to high glutamate concentration activates aerobic glycolysis but inhibits ATP-linked respiration in cultured cortical astrocytes. Cell Biochem Funct, 2014; 32, 530-37. doi:  10.1002/cbf.v32.6
[20] Laird MD, Clerc P, Polster BM, et al. Augmentation of Normal and Glutamate-Impaired Neuronal Respiratory Capacity by Exogenous Alternative Biofuels. Transl Stroke Res, 2013; 4, 643-51. doi:  10.1007/s12975-013-0275-0
[21] Hertz L, Zielke HR. Astrocytic control of glutamatergic activity:astrocytes as stars of the show. Trends Neurosci, 2004; 27, 735-43. doi:  10.1016/j.tins.2004.10.008
[22] Yang SH, Li W, Sumien N, et al. Alternative mitochondrial electron transfer for the treatment of neurodegenerative diseases and cancers:methylene blue connects the dots. Prog Neurobiol, 2015.
[23] Brooks GA, Martin NA. Cerebral metabolism following traumatic brain injury:new discoveries with implications for treatment. Front Neurosci, 2015; 8, 408. https://www.researchgate.net/profile/George_Brooks/publication/272365466_Cerebral_Metabolism_Following_Traumatic_Brain_Injury_New_Discoveries_with_Implications_for_Treatment/links/550085110cf2d61f820e20e3.pdf
[24] Sontheimer H. A role for glutamate in growth and invasion of primary brain tumors. J Neurochem, 2008; 105, 287-95. doi:  10.1111/j.1471-4159.2008.05301.x
[25] Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med, 1994; 330, 613-22. doi:  10.1056/NEJM199403033300907
[26] Dienel GA, Mckenna MC. A dogma-breaking concept:glutamate oxidation in astrocytes is the source of lactate during aerobic glycolysis in resting subjects. J Neurochem, 2014; 131, 395-98. doi:  10.1111/jnc.2014.131.issue-4
[27] Bittner CX, Valdebenito R, Ruminot I, et al. Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J Neurosci, 2011; 31, 4709-13. doi:  10.1523/JNEUROSCI.5311-10.2011
[28] Chatton JY, Magistretti PJ, Barros LF. Sodium signaling and astrocyte energy metabolism. Glia, 2016; 64, 1667-76. doi:  10.1002/glia.22971
[29] Thevenet J, De MU, Domingo JS, et al. Medium-chain fatty acids inhibit mitochondrial metabolism in astrocytes promoting astrocyte-neuron lactate and ketone body shuttle systems. FASEB J, 2016; 30, 1913-26. doi:  10.1096/fj.201500182
[30] Wyss MT, Jolivet R, Buck A, et al. In vivo evidence for lactate as a neuronal energy source. J Neurosci, 2011; 31, 7477-85. doi:  10.1523/JNEUROSCI.0415-11.2011
[31] Steinman MQ, Gao V, Alberini CM. The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Front Integr Neurosci, 2016; 10, 10.
[32] Van Hall G, Stømstad M, Rasmussen P, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab, 2009; 29, 1121-9. doi:  10.1038/jcbfm.2009.35
[33] Schurr A. Cerebral glycolysis:a century of persistent misunderstanding and misconception. Front Neurosci, 2015; 8, 360. https://www.researchgate.net/publication/269186683_Cerebral_Glycolysis_A_Century_of_Persistent_Misunderstanding_and_Misconception
[34] Dinuzzo M. Astrocyte-Neuron Interactions during Learning May Occur by Lactate Signaling Rather than Metabolism. Front Integr Neurosci, 2016; 10, 2. https://www.researchgate.net/publication/292213402_Astrocyte-Neuron_Interactions_during_Learning_May_Occur_by_Lactate_Signaling_Rather_than_Metabolism
[35] Llorente-Folch I, Rueda CB, Pérez-Liébana I, et al. l-Lactate-Mediated Neuroprotection against Glutamate-Induced Excitotoxicity Requires ARALAR/AGC1. J Neurosci, 2016; 36, 4443-56.