[1] Convertino VA. Mechanisms of microgravity induced orthostatic intolerance: implications for effective countermeasures. J Gravit Physiol, 2002; 9, 1−13.
[2] Hargens AR, Watenpaugh DE. Cardiovascular adaptation to spaceflight. Med Sci Sports Exerc, 1996; 28, 977−82. doi:  10.1097/00005768-199608000-00007
[3] Zhang LF. Vascular adaptation to microgravity: what have we learned? J Appl Physiol, 2001; 91, 2415−30. doi:  10.1152/jappl.2001.91.6.2415
[4] Zhang LF. Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol, 2013; 113, 2873−95. doi:  10.1007/s00421-013-2597-8
[5] Maier JAM, Cialdai F, Monici M, et al. The impact of microgravity and hypergravity on endothelial cells. BioMed Res Int, 2015; 2015, 434803.
[6] Zhang R, Bai YG, Lin LJ, et al. Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide levels in cerebral and carotid arteries of hindlimb unweighting rats. J Appl Physiol, 2009; 106, 251−8. doi:  10.1152/japplphysiol.01278.2007
[7] Zhang R, Ran HH, Ma J, et al. NAD(P)H oxidase inhibiting with apocynin improved vascular reactivity in tail-suspended hindlimb unweighting rat. J Physiol Biochem, 2012; 68, 99−105. doi:  10.1007/s13105-011-0123-1
[8] Shi F, Wang YC, Zhao TZ, et al. Effects of simulated microgravity on human umbilical vein endothelial cell angiogenesis and role of the PI3K-Akt-eNOS signal pathway. PLoS One, 2012; 7, e40365. doi:  10.1371/journal.pone.0040365
[9] Versari S, Villa A, Bradamante S, et al. Alterations of the actin cytoskeleton and increased nitric oxide synthesis are common features in human primary endothelial cell response to changes in gravity. Biochim Biophys Acta, 2007; 1773, 1645−52. doi:  10.1016/j.bbamcr.2007.05.014
[10] Xie MJ, Ma YG, Gao F, et al. Activation of BKCa channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in simulated microgravity rats. Am J Physiol Cell Physiol, 2010; 298, C1489−500. doi:  10.1152/ajpcell.00474.2009
[11] Xue JH, Zhang LF, Ma J, et al. Differential regulation of L-type Ca2+ channels in cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. Am J Physiol Heart Circ Physiol, 2007; 293, H691−701. doi:  10.1152/ajpheart.01229.2006
[12] Islam MS. Calcium signaling: from basic to bedside. In: Islam M. Calcium Signaling. Springer. 2020, 1-6.
[13] Liu ZW, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol, 2018; 153, 91−122. doi:  10.1016/j.bcp.2018.02.012
[14] Cioffi DL. Redox regulation of endothelial canonical transient receptor potential channels. Antioxid Redox Signal, 2011; 15, 1567−82. doi:  10.1089/ars.2010.3740
[15] Görlach A, Bertram K, Hudecova S, et al. Calcium and ROS: a mutual interplay. Redox Biol, 2015; 6, 260−71. doi:  10.1016/j.redox.2015.08.010
[16] Zhang X, Yan SM, Zheng HL, et al. A mechanism underlying hypertensive occurrence in the metabolic syndrome: cooperative effect of oxidative stress and calcium accumulation in vascular smooth muscle cells. Horm Metab Res, 2014; 46, 126−32.
[17] Hall AR, Burke N, Dongworth RK, et al. Mitochondrial fusion and fission proteins: novel therapeutic targets for combating cardiovascular disease. Br J Pharmacol, 2014; 171, 1890−906. doi:  10.1111/bph.12516
[18] Wu SN, Lu QL, Wang QL, et al. Binding of FUN14 domain containing 1 with inositol 1, 4, 5-trisphosphate receptor in mitochondria-associated endoplasmic reticulum membranes maintains mitochondrial dynamics and function in hearts in Vivo. Circulation, 2017; 136, 2248−66. doi:  10.1161/CIRCULATIONAHA.117.030235
[19] Youle RJ, Van Der Bliek AM. Mitochondrial fission, fusion, and stress. Science, 2012; 337, 1062−5. doi:  10.1126/science.1219855
[20] Yu R, Jin SB, Lendahl U, et al. Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J, 2019; 38, e99748.
[21] Zhang R, Ran HH, Cai LL, et al. Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries. FASEB J, 2014; 28, 2715−24. doi:  10.1096/fj.13-245654
[22] Zhang R, Ran HH, Peng L, et al. Mitochondrial regulation of NADPH oxidase in hindlimb unweighting rat cerebral arteries. PLoS One, 2014; 9, e95916. doi:  10.1371/journal.pone.0095916
[23] Peng L, Ran HH, Zhang Y, et al. NADPH oxidase accounts for changes in cerebrovascular redox status in hindlimb unweighting rats. Biomed Environ Sci, 2015; 28, 799−807. doi:  10.1016/S0895-3988(15)30110-0
[24] Ren XL, Zhang R, Zhang YY, et al. Nitric oxide synthase activity in the abdominal aorta of rats is decreased after 4 weeks of simulated microgravity. Clin Exp Pharmacol Physiol, 2011; 38, 683−7. doi:  10.1111/j.1440-1681.2011.05565.x
[25] Zhang R, Jia GL, Bao JX, et al. Increased vascular cell adhesion molecule-1 was associated with impaired endothelium-dependent relaxation of cerebral and carotid arteries in simulated microgravity rats. J Physiol Sci, 2008; 58, 67−73. doi:  10.2170/physiolsci.RP010707
[26] Zhang R, Jiang M, Zhang JB, et al. Regulation of the cerebrovascular smooth muscle cell phenotype by mitochondrial oxidative injury and endoplasmic reticulum stress in simulated microgravity rats via the PERK-eIF2α-ATF4-CHOP pathway. Biochim Biophys Acta Mol Basis Dis, 2020; 1866, 165799. doi:  10.1016/j.bbadis.2020.165799
[27] Xue JH, Chen LH, Zhao HZ, et al. Differential regulation and recovery of intracellular Ca2+ in cerebral and small mesenteric arterial smooth muscle cells of simulated microgravity rat. PLoS One, 2011; 6, e19775. doi:  10.1371/journal.pone.0019775
[28] Shah VN, Chagot B, Chazin WJ. Calcium-dependent regulation of ion channels. Calcium Bind Proteins, 2006; 1, 203−12.
[29] Cheng J, Wen J, Wang N, et al. Ion channels and vascular diseases. Arterioscler Thromb Vasc Biol, 2019; 39, e146−56.
[30] Csordás G, Renken C, Várnai P, et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol, 2006; 174, 915−21. doi:  10.1083/jcb.200604016
[31] Rowland AA, Voeltz GK. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat Rev Mol Cell Biol, 2012; 13, 607−25. doi:  10.1038/nrm3440
[32] Sterea AM, El Hiani Y. The role of mitochondrial calcium signaling in the pathophysiology of cancer cells. In: Islam M. Calcium Signaling. Springer. 2020, 747-70.
[33] De Brito OM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature, 2008; 456, 605−10. doi:  10.1038/nature07534
[34] Chernorudskiy AL, Zito E. Regulation of calcium homeostasis by ER redox: a close-up of the er/mitochondria connection. J Mol Biol, 2017; 429, 620−32. doi:  10.1016/j.jmb.2017.01.017
[35] Eid AH, El-Yazbi AF, Zouein F, et al. Inositol 1, 4, 5-trisphosphate receptors in hypertension. Front Physiol, 2018; 9, 1018. doi:  10.3389/fphys.2018.01018
[36] Finkel T, Menazza S, Holmstrom KM, et al. The ins and outs of mitochondrial calcium. Circ Res, 2015; 116, 1810−9. doi:  10.1161/CIRCRESAHA.116.305484
[37] Vianello A, Casolo V, Petrussa E, et al. The mitochondrial permeability transition pore (PTP)-an example of multiple molecular exaptation? Biochim Biophys Acta Bioenerg, 2012; 1817, 2072−86. doi:  10.1016/j.bbabio.2012.06.620
[38] Feno S, Butera G, Reane DV, et al. Crosstalk between calcium and ROS in pathophysiological conditions. Oxid Med Cell Longev, 2019; 2019, 9324018.
[39] Kozlov AV, Lancaster Jr JR, Meszaros AT, et al. Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol, 2017; 13, 170−81. doi:  10.1016/j.redox.2017.05.017
[40] Avila G, De La Rosa JA, Monsalvo-Villegas A, et al. Ca2+ channels mediate bidirectional signaling between sarcolemma and sarcoplasmic reticulum in muscle cells. Cells, 2019; 9, 55. doi:  10.3390/cells9010055
[41] Bartok A, Weaver D, Golenár T, et al. IP3 receptor isoforms differently regulate ER-mitochondrial contacts and local calcium transfer. Nature Communications, 2019; 10, 3726. doi:  10.1038/s41467-019-11646-3
[42] Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell, 2005; 120, 483−95. doi:  10.1016/j.cell.2005.02.001
[43] Archer SL. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med, 2013; 369, 2236−51. doi:  10.1056/NEJMra1215233
[44] Cipolat S, De Brito OM, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA, 2004; 101, 15927−32. doi:  10.1073/pnas.0407043101
[45] Guerrero-Hernandez A, Sanchez-Vazquez VH, Martinez-Martinez E, et al. Sarco-endoplasmic reticulum calcium release model based on changes in the luminal calcium content. In: Islam M. Calcium Signaling. Springer. 2020, 337-70.
[46] Alirol E, James D, Huber D, et al. The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol Biol Cell, 2006; 17, 4593−605. doi:  10.1091/mbc.e06-05-0377
[47] Vallese F, Barazzuol L, Maso L, et al. ER-mitochondria calcium transfer, organelle contacts and neurodegenerative diseases. In: Islam M. Calcium Signaling. Springer. 2020, 719-46.
[48] Zhang R, Ran HH, Gao YL, et al. Differential vascular cell adhesion molecule-1 expression and superoxide production in simulated microgravity rat vasculature. EXCLI J, 2010; 9, 195−204.
[49] Jiang M, Wang HM, Liu ZF, et al. Endoplasmic reticulum stress-dependent activation of iNOS/NO-NF-κB signaling and NLRP3 inflammasome contributes to endothelial inflammation and apoptosis associated with microgravity. FASEB J, 2020; 34, 10835−49. doi:  10.1096/fj.202000734R