[1] Global Strategy for Asthma Management and Prevention, Global Initiative for Asthma (GINA Updated 2017). http://www.ginasthma.org/ [2017-5-14].
[2] Maniscalco M, Paris D, Melck DJ, et al. Coexistence of obesity and asthma determines a distinct respiratory metabolic phenotype. J Allergy Clin Immunol, 2017; 139, 1536−47.e5. doi:  10.1016/j.jaci.2016.08.038
[3] Knuffman JE, Sorkness CA, Lemanske RF, et al. Phenotypic predictors of long-term response to inhaled corticosteroid and leukotriene modifier therapies in pediatric asthma. J Allergy Clin Immunol, 2009; 123, 411−6. doi:  10.1016/j.jaci.2008.11.016
[4] Vital signs: asthma prevalence, disease characteristics, and self-management education: United States, 2001--2009. MMWR Morb Mortal Wkly Rep, 2011; 60, 547-52.
[5] Zhang ZL, Wang J, Liu F, et al. Circulating Neutrophil Counts Decrease in Response to Mitigated Air Quality in Stable COPD Patients. Biomed Environ Sci, 2018; 31, 66−71.
[6] Global Strategy for the Diagnosis, Management and Prevention of Chronic Obstructive Pulmonary Disease, Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2017. Available from: http://www.goldcopd.org/ [2017-4-20].
[7] Menezes AM, de Oca MM, Pérez-Padilla R, et al. Increased risk of exacerbation and hospitalization in subjects with an overlap phenotype: COPD-asthma. Chest, 2014; 145, 297−304. doi:  10.1378/chest.13-0622
[8] Sethi S, Mahler DA, Marcus P, et al. Inflammation in COPD: implications for management. Am J Med, 2012; 125, 1162−70. doi:  10.1016/j.amjmed.2012.06.024
[9] Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet, 2004; 364, 709−21. doi:  10.1016/S0140-6736(04)16900-6
[10] Snowden S, Dahlén SE, Wheelock CE. Application of metabolomics approaches to the study of respiratory diseases. Bioanalysis, 2012; 4, 2265−90. doi:  10.4155/bio.12.218
[11] Zhou B, Xiao JF, Tuli L, et al. LC-MS-based metabolomics. Mol Biosyst, 2012; 8, 470−81. doi:  10.1039/C1MB05350G
[12] Arakaki AK, Skolnick J, McDonald JF. Marker metabolites can be therapeutic targets as well. Nature, 2008; 456, 443.
[13] Nobakht MGBF, Aliannejad R, Rezaei-Tavirani M, et al. The metabolomics of airway diseases, including COPD, asthma and cystic fibrosis. Biomarkers, 2015; 20, 5−16. doi:  10.3109/1354750X.2014.983167
[14] Dallinga JW, Robroeks CM, van Berkel JJ, et al. Volatile organic compounds in exhaled breath as a diagnostic tool for asthma in children. Clin Exp Allergy, 2010; 40, 68−76.
[15] Mattarucchi E, Baraldi E, Guillou C. Metabolomics applied to urine samples in childhood asthma; differentiation between asthma phenotypes and identification of relevant metabolites. Biomed Chromatogr, 2012; 26, 89−94. doi:  10.1002/bmc.1631
[16] Gahleitner F, Guallar-Hoyas C, Beardsmore CS, et al. Metabolomics pilot study to identify volatile organic compound markers of childhood asthma in exhaled breath. Bioanalysis, 2013; 5, 2239−47. doi:  10.4155/bio.13.184
[17] Comhair SA, McDunn J, Bennett C, et al. Metabolomic Endotype of Asthma. J Immunol, 2015; 195, 643−50. doi:  10.4049/jimmunol.1500736
[18] Carraro S, Rezzi S, Reniero F, et al. Metabolomics applied to exhaled breath condensate in childhood asthma. Am J Respir Crit Care Med, 2007; 175, 986−90. doi:  10.1164/rccm.200606-769OC
[19] Saude EJ, Obiefuna IP, Somorjai RL, et al. Metabolomic biomarkers in a model of asthma exacerbation: urine nuclear magnetic resonance. Am J Respir Crit Care Med, 2009; 179, 25−34. doi:  10.1164/rccm.200711-1716OC
[20] Saude EJ, Skappak CD, Regush S, et al. Metabolomic profiling of asthma: diagnostic utility of urine nuclear magnetic resonance spectroscopy. J Allergy Clin Immunol, 2011; 127, 757−64. doi:  10.1016/j.jaci.2010.12.1077
[21] Ibrahim B, Marsden P, Smith JA, et al. Breath metabolomic profiling by nuclear magnetic resonance spectroscopy in asthma. Allergy, 2013; 68, 1050−6. doi:  10.1111/all.12211
[22] Jung J, Kim SH, Lee HS, et al. Serum metabolomics reveals pathways and biomarkers associated with asthma pathogenesis. Clin Exp Allergy, 2013; 43, 425−33. doi:  10.1111/cea.12089
[23] Motta A, Paris D, D'Amato M, et al. NMR metabolomic analysis of exhaled breath condensate of asthmatic patients at two different temperatures. J Proteome Res, 2014; 13, 6107−20. doi:  10.1021/pr5010407
[24] Adamko DJ, Nair P, Mayers I, et al. Metabolomic profiling of asthma and chronic obstructive pulmonary disease: A pilot study differentiating diseases. J Allergy Clin Immunol, 2015; 136, 571−580.e3. doi:  10.1016/j.jaci.2015.05.022
[25] Chang C, Guo ZG, He B, et al. Metabolic alterations in the sera of Chinese patients with mild persistent asthma: a GC-MS-based metabolomics analysis. Acta Pharmacol Sin, 2015; 36, 1356−66. doi:  10.1038/aps.2015.102
[26] Dunn WB, Broadhurst D, Begley P, et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat Protoc, 2011; 6, 1060−83. doi:  10.1038/nprot.2011.335
[27] Ho WE, Xu YJ, Xu F, et al. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol, 2013; 48, 204−11. doi:  10.1165/rcmb.2012-0246OC
[28] Quan-Jun Y, Jian-Ping Z, Jian-Hua Z, et al. Distinct Metabolic Profile of Inhaled Budesonide and Salbutamol in Asthmatic Children during Acute Exacerbation. Basic Clin Pharmacol Toxicol, 2017; 120, 303−311. doi:  10.1111/bcpt.12686
[29] da Rocha Lapa F, de Oliveira APL, Accerruri BG, et al. Anti-inflammatory effects of inosine in allergic lung inflammation in mice: evidence for the participation of adenosine A2A and A 3 receptors. Purinergic Signal, 2013; 9, 325−36. doi:  10.1007/s11302-013-9351-x
[30] Trevethick MA, Mantell SJ, Stuart EF, et al. Treating lung inflammation with agonists of the adenosine A2A receptor: promises, problems and potential solutions. Br J Pharmacol, 2008; 155, 463−74.
[31] Kool M, Willart MA, van Nimwegen M, et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity, 2011; 34, 527−40. doi:  10.1016/j.immuni.2011.03.015
[32] Li L, Wan C, Wen F. An unexpected role for serum uric acid as a biomarker for severity of asthma exacerbation. Asian Pac J Allergy Immunol, 2014; 32, 93−9.
[33] Huff RD, Hsu AC, Nichol KS, et al. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells. PLoS One, 2017; 12, e0184260. doi:  10.1371/journal.pone.0184260
[34] Fukuhara A, Saito J, Sato S, et al. The association between risk of airflow limitation and serum uric acid measured at medical health check-ups. Int J Chron Obstruct Pulmon Dis, 2017; 12, 1213−9. doi:  10.2147/COPD.S126249
[35] Yu M, Cui FX, Jia HM, et al. Aberrant purine metabolism in allergic asthma revealed by plasma metabolomics. J Pharm Biomed Anal, 2016; 120, 181−9. doi:  10.1016/j.jpba.2015.12.018
[36] Park YH, Fitzpatrick AM, Medriano CA, et al. High-resolution metabolomics to identify urine biomarkers in corticosteroid-resistant asthmatic children. J Allergy Clin Immunol, 2017; 139, 1518−24.e4. doi:  10.1016/j.jaci.2016.08.018
[37] Lane C, Knight D, Burgess S, et al. Epithelial inducible nitric oxide synthase activity is the major determinant of nitric oxide concentration in exhaled breath. Thorax, 2004; 59, 757−60. doi:  10.1136/thx.2003.014894
[38] Morris CR, Poljakovic M, Lavrisha L, et al. Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J Respir Crit Care Med, 2004; 170, 148−53. doi:  10.1164/rccm.200309-1304OC
[39] Winnica D, Que LG, Baffi C, et al. l-citrulline prevents asymmetric dimethylarginine-mediated reductions in nitric oxide and nitrosative stress in primary human airway epithelial cells. Clin Exp Allergy, 2017; 47, 190−9. doi:  10.1111/cea.12802
[40] Jonker R, Deutz NE, Erbland ML, et al. Alterations in whole-body arginine metabolism in chronic obstructive pulmonary disease. Am J Clin Nutr, 2016; 103, 1458−64. doi:  10.3945/ajcn.115.125187
[41] Maniscalco M, Paris D, Melck DJ, et al. Differential diagnosis between newly diagnosed asthma and COPD using exhaled breath condensate metabolomics: a pilot study. Eur Respir J, 2018, 51.