[1] Kowalska A, Walkiewicz K, Koziel P, et al. Aflatoxins: characteristics and impact on human health. Postepy Hig Med Dosw (Online), 2017; 71, 315−27.
[2] Medina A, Rodriguez A, Magan N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front Microbiol, 2014; 5, 348.
[3] Rushing BR, Selim MI. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol, 2019; 124, 81−100. doi:  10.1016/j.fct.2018.11.047
[4] Nugraha A, Khotimah K, Rietjens I. Risk assessment of aflatoxin B1 exposure from maize and peanut consumption in Indonesia using the margin of exposure and liver cancer risk estimation approaches. Food Chem Toxicol, 2018; 113, 134−44. doi:  10.1016/j.fct.2018.01.036
[5] Bbosa GS, Kitya D, Odda J, et al. Aflatoxins metabolism, effects on epigenetic mechanisms and their role in carcinogenesis. Health, 2013; 10, 720−6.
[6] Eaton DL, Gallagher EP. Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol, 1994; 34, 135−72. doi:  10.1146/annurev.pa.34.040194.001031
[7] Engin AB, Engin A. DNA damage checkpoint response to aflatoxin B1. Environ Toxicol Pharmacol, 2019; 65, 90−6. doi:  10.1016/j.etap.2018.12.006
[8] Shen HM, Shi CY, Lee HP, et al. Aflatoxin B1-induced lipid peroxidation in rat liver. Toxicol Appl Pharmacol, 1994; 127, 145−50. doi:  10.1006/taap.1994.1148
[9] Qiu T, Shen X, Li X, et al. Egg yolk immunoglobulin supplementation prevents rat liver from aflatoxin b1-induced oxidative damage and genotoxicity. J Agric Food Chem, 2018; 66, 13260−7. doi:  10.1021/acs.jafc.8b04659
[10] El-Nekeety AA, Salman AS, Hathout AS, et al. Evaluation of the bioactive extract of actinomyces isolated from the Egyptian environment against aflatoxin B1-induce cytotoxicity, genotoxicity and oxidative stress in the liver of rats. Food Chem Toxicol, 2017; 105, 241−55. doi:  10.1016/j.fct.2017.04.024
[11] Ma Q, Li Y, Fan Y, et al. Molecular mechanisms of lipoic acid protection against aflatoxin b1-induced liver oxidative damage and inflammatory responses in broilers. Toxins (Basel), 2015; 7, 5435−47. doi:  10.3390/toxins7124879
[12] Mughal MJ, Xi P, Yi Z, et al. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget, 2017; 8, 8239−49.
[13] Ali Rajput S, Sun L, Zhang N, et al. Ameliorative effects of grape seed proanthocyanidin extract on growth performance, immune function, antioxidant capacity, biochemical constituents, liver histopathology and aflatoxin residues in broilers exposed to aflatoxin b1 [published correction appears in Toxins (Basel). 2018 Sep 10;10(9)]. Toxins (Basel), 2017; 9, 371. doi:  10.3390/toxins9110371
[14] Yang D, Jiang H, Lu J, et al. Dietary grape seed proanthocyanidin extract regulates metabolic disturbance in rat liver exposed to lead associated with PPARα signaling pathway. Environ Pollut, 2018; 237, 377−87. doi:  10.1016/j.envpol.2018.02.035
[15] Liu B, Jiang H, Lu J, et al. Grape seed procyanidin extract ameliorates lead-induced liver injury via miRNA153 and AKT/GSK-3β/Fyn-mediated Nrf2 activation. J Nutr Biochem, 2018; 52, 115−23. doi:  10.1016/j.jnutbio.2017.09.025
[16] Niu Q, He P, Xu S, et al. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of grape seed proanthocyanidin extract. J Toxicol Sci, 2018; 43, 311−9. doi:  10.2131/jts.43.311
[17] Yang BY, Zhang XY, Guan SW, et al. Protective effect of procyanidin B2 against CCl4-induced acute liver injury in mice. Molecules, 2015; 20, 12250−65. doi:  10.3390/molecules200712250
[18] Wang Z, Zhang Z, Du N, et al. Hepatoprotective effects of grape seed Procyanidin B2 in rats with carbon tetrachloride-induced hepatic fibrosis. Altern Ther Health Med, 2015; 21(Suppl 2), 12−21.
[19] Su H, Li Y, Hu D, et al. Procyanidin B2 ameliorates free fatty acids-induced hepatic steatosis through regulating TFEB-mediated lysosomal pathway and redox state. Free Radic Biol Med, 2018; 126, 269−86. doi:  10.1016/j.freeradbiomed.2018.08.024
[20] Xing YW, Lei GT, Wu QH, et al. Procyanidin B2 protects against diet-induced obesity and non-alcoholic fatty liver disease via the modulation of the gut microbiota in rabbits. World J Gastroenterol, 2019; 25, 955−66. doi:  10.3748/wjg.v25.i8.955
[21] Cui Y, Ling JG, Yao WR, et al. Protective Effect of Aloe vera against Aflatoxin B1-Induced Acute Hepatotoxicity in Rats. Food Sci, 2016; 37, 175−81. (In Chinese)
[22] Wang HJ, Wu ZB. Histological, histochemical and ultrastructural studies on acute hepatic injury induced by aflatoxin b1 in rats. J Tongji Med Univ, 1992; 153−5, 211. (In Chinese)
[23] Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods, 2012; 9, 671−5. doi:  10.1038/nmeth.2089
[24] IARC monographs preamble–preamble to the IARC ponographs (amended January 2019). WHO. https://monographs.iarc.fr/iarc-monographs-preamble-preamble-to-the-iarc-monographs/. [2019-9-11]
[25] Muhammad I, Wang X, Li S, et al. Curcumin confers hepatoprotection against AFB1-induced toxicity via activating autophagy and ameliorating inflammation involving Nrf2/HO-1 signaling pathway. Mol Biol Rep, 2018; 45, 1775−85. doi:  10.1007/s11033-018-4323-4
[26] Yılmaz S, Kaya E, Comakli S. Vitamin E (α tocopherol) attenuates toxicity and oxidative stress induced by aflatoxin in rats. Adv Clin Exp Med, 2017; 26, 907−17. doi:  10.17219/acem/66347
[27] Qian G, Tang L, Lin S, et al. Sequential dietary exposure to aflatoxin B1 and fumonisin B1 in F344 rats increases liver preneoplastic changes indicative of a synergistic interaction. Food Chem Toxicol, 2016; 95, 188−95. doi:  10.1016/j.fct.2016.07.017
[28] Amaya-Farfan J. Aflatoxin B1-induced hepatic steatosis: role of carbonyl compounds and active diols on steatogenesis. Lancet, 1999; 353, 747−8. doi:  10.1016/S0140-6736(98)09261-7
[29] Solis-Cruz B, Hernandez-Patlan D, Petrone VM, et al. Evaluation of a bacillus-based direct-fed microbial on aflatoxin b1 toxic effects, performance, immunologic status, and serum biochemical parameters in broiler chickens. Avian Dis, 2019; 63, 659−69. doi:  10.1637/aviandiseases-D-19-00100
[30] Kleiner DE. Histopathological challenges in suspected drug-induced liver injury. Liver Int, 2018; 38, 198−209. doi:  10.1111/liv.13584
[31] Shyamal S, Latha PG, Suja SR, et al. Hepatoprotective effect of three herbal extracts on aflatoxin B1-intoxicated rat liver. Singapore Med J, 2010; 51, 326−31.
[32] Dufour DR, Lott JA, Nolte FS, et al. Diagnosis and monitoring of hepatic injury. I. Performance characteristics of laboratory tests. Clin Chem, 2000; 46, 2027−49. doi:  10.1093/clinchem/46.12.2027
[33] Dufour DR, Lott JA, Nolte FS, et al. Diagnosis and monitoring of hepatic injury. II. Recommendations for use of laboratory tests in screening, diagnosis, and monitoring. Clin Chem, 2000; 46, 2050−68. doi:  10.1093/clinchem/46.12.2050
[34] Brinda R, Vijayanandraj S, Uma D, et al. Role of Adhatoda vasica (L.) Nees leaf extract in the prevention of aflatoxin-induced toxicity in Wistar rats. J Sci Food Agric, 2013; 93, 2743−8. doi:  10.1002/jsfa.6093
[35] Ajiboye TO, Yakubu MT, Oladiji AT. Lophirones B and C prevent aflatoxin B1-induced oxidative stress and DNA fragmentation in rat hepatocytes. Pharm Biol, 2016; 54, 1962−70. doi:  10.3109/13880209.2015.1137603
[36] Berndt C, Lillig CH. Glutathione, glutaredoxins, and iron. Antioxid Redox Signal, 2017; 27, 1235−51. doi:  10.1089/ars.2017.7132
[37] Bowling AC, Schulz JB, Brown RH Jr, et al. Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem, 1993; 61, 2322−5. doi:  10.1111/j.1471-4159.1993.tb07478.x
[38] Heck DE, Shakarjian M, Kim HD, et al. Mechanisms of oxidant generation by catalase. Ann N Y Acad Sci, 2010; 1203, 120−5. doi:  10.1111/j.1749-6632.2010.05603.x
[39] Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem, 2017; 524, 13−30. doi:  10.1016/j.ab.2016.10.021
[40] Kasai H. What causes human cancer? Approaches from the chemistry of DNA damage. Genes Environ, 2016; 38, 19. doi:  10.1186/s41021-016-0046-8
[41] Kim YS, Kim YH, Noh JR, et al. Protective effect of korean red ginseng against aflatoxin b1-Induced hepatotoxicity in rat. J Ginseng Res, 2011; 35, 243−9. doi:  10.5142/jgr.2011.35.2.243
[42] Shen HM, Ong CN, Lee BL, et al. Aflatoxin B1-induced 8-hydroxydeoxyguanosine formation in rat hepatic DNA. Carcinogenesis, 1995; 16, 419−22. doi:  10.1093/carcin/16.2.419
[43] Yao X, Huang J, Zhong H, et al. Targeting interleukin-6 in inflammatory autoimmune diseases and cancers. Pharmacol Ther, 2014; 141, 125−39. doi:  10.1016/j.pharmthera.2013.09.004
[44] Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci, 2012; 8, 1237−47. doi:  10.7150/ijbs.4989
[45] Huang L, Zhao Z, Duan C, et al. Lactobacillus plantarum C88 protects against aflatoxin B1-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis. BMC Microbiol, 2019; 19, 170. doi:  10.1186/s12866-019-1525-4
[46] Rajput SA, Sun L, Zhang NY, et al. Grape seed proanthocyanidin extract alleviates aflatoxin b1-induced immunotoxicity and oxidative stress via modulation of NF-κB and Nrf2 signaling pathways in broilers. Toxins (Basel), 2019; 11, 23. doi:  10.3390/toxins11010023
[47] Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008; 8, 958−69. doi:  10.1038/nri2448
[48] Long M, Zhang Y, Li P, et al. Intervention of grape seed Proanthocyanidin extract on the subchronic immune injury in mice induced by aflatoxin b1. Int J Mol Sci, 2016; 17, 516. doi:  10.3390/ijms17040516
[49] Hinton DM, Myers MJ, Raybourne RA, et al. Immunotoxicity of aflatoxin B1 in rats: effects on lymphocytes and the inflammatory response in a chronic intermittent dosing study. Toxicol Sci, 2003; 73, 362−77. doi:  10.1093/toxsci/kfg074
[50] Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms, physiological roles, and therapeutic opportunities. Cell Death Differ, 2006; 13, 1378−86. doi:  10.1038/sj.cdd.4401975
[51] Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007; 35, 495−516. doi:  10.1080/01926230701320337
[52] Wang X, Muhammad I, Sun X, et al. Protective role of curcumin in ameliorating AFB1-induced apoptosis via mitochondrial pathway in liver cells. Mol Biol Rep, 2018; 45, 881−91. doi:  10.1007/s11033-018-4234-4
[53] Liu Y, Wang W. Aflatoxin B1 impairs mitochondrial functions, activates ROS generation, induces apoptosis and involves Nrf2 signal pathway in primary broiler hepatocytes. Anim Sci J, 2016; 87, 1490−500. doi:  10.1111/asj.12550
[54] Majtnerová P, Roušar T. An overview of apoptosis assays detecting DNA fragmentation. Mol Biol Rep, 2018; 45, 1469−78. doi:  10.1007/s11033-018-4258-9
[55] Loo DT. In situ detection of apoptosis by the TUNEL assay: an overview of techniques. Methods Mol Biol, 2011; 682, 3−13.