[1] Jiang CX, He YC, Chong GG, et al. Enzymatic in situ saccharification of sugarcane bagasse pretreated with low loading of alkalic salts Na2SO3/Na3PO4 by autoclaving. J Biotechnol, 2017; 259, 73−82. doi:  10.1016/j.jbiotec.2017.08.004
[2] Devarajan S, Sha MS, Geetha M, et al. A paper-based colourimetric sensor for sodium sulfite detection in beverages. J Food Meas Charact, 2023; 17, 3973−9. doi:  10.1007/s11694-023-01929-1
[3] Jiang B, Ren CH, Li Y, et al. Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in Caenorhabditis elegans. J Biol Inorg Chem, 2011; 16, 267−74. doi:  10.1007/s00775-010-0723-1
[4] Abudara V, Jiang RG, Eyzaguirre C. Behavior of junction channels between rat glomus cells during normoxia and hypoxia. J Neurophysiol, 2002; 88, 639−49. doi:  10.1152/jn.2002.88.2.639
[5] Grasselli F, Basini G, Bussolati S, et al. Cobalt chloride, a hypoxia-mimicking agent, modulates redox status and functional parameters of cultured swine granulosa cells. Reprod Fertil Dev, 2005; 17, 715−20. doi:  10.1071/RD05059
[6] Shan Y, Pan Q, Liu JY, et al. Covalently linking the Escherichia coli global anaerobic regulator FNR in tandem allows it to function as an oxygen-stable dimer. Biochem Biophys Res Commun, 2012; 419, 43−8. doi:  10.1016/j.bbrc.2012.01.121
[7] Alexeeva S, Hellingwerf KJ, de Mattos MJT. Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions. J Bacteriol, 2003; 185, 204−9. doi:  10.1128/JB.185.1.204-209.2003
[8] Oshima T, Aiba H, Masuda Y et al. Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol, 2002; 46, 281−91. doi:  10.1046/j.1365-2958.2002.03170.x
[9] Baba T, Ara T, Hasegawa M, et al. Construction of Escherichia coli K-12 in-frame single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2006; 1-11.
[10] Sternglanz R, DiNardo S, Voelkel KA, et al. Mutations in the gene coding for Escheric hia coli DNA topoisomerase I affect transcription and transposition. Proc Natl Acad Sci USA, 1981; 78, 2747−51. doi:  10.1073/pnas.78.5.2747
[11] Greenberg JT, Monach P, Chou JH, et al. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci USA, 1990; 87, 6181−5. doi:  10.1073/pnas.87.16.6181
[12] Gunsalus RP, Park SJ. Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol, 1994; 145, 437−50. doi:  10.1016/0923-2508(94)90092-2
[13] Kang YS, Weber KD, Qiu Y, et al. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol, 2005; 187, 1135−60. doi:  10.1128/JB.187.3.1135-1160.2005
[14] Salmon K, Hung SP, Mekjian K, et al. Global gene expression profiling in Escherichia coli K12 the effects of oxygen availability and FNR. J Biol Chem, 2003; 278, 29837−55. doi:  10.1074/jbc.M213060200
[15] Sutton VR, Mettert EL, Beinert H, et al. Kinetic analysis of the oxidative conversion of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ Cluster. J Bacteriol, 2004; 186, 8018−25. doi:  10.1128/JB.186.23.8018-8025.2004
[16] Bekker M, Alexeeva S, Laan W, et al. The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool. J Bacteriol, 2010; 192, 746−54. doi:  10.1128/JB.01156-09
[17] Bekker M, Kramer G, Hartog AF, et al. Changes in the redox state and composition of the quinone pool of Escherichia coli during aerobic batch-culture growth. Microbiology (Reading), 2007; 153, 1974−80. doi:  10.1099/mic.0.2007/006098-0
[18] Iuchi S, Lin ECC. Adaptation of Escherichia coli to redox environments by gene expression. Mol Microbiol, 1993; 9, 9−15. doi:  10.1111/j.1365-2958.1993.tb01664.x
[19] Iuchi S, Lin EC. arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA, 1988; 85, 1888−92. doi:  10.1073/pnas.85.6.1888