[1] . Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell, 2005; 120, 483-495. doi:  10.1016/j.cell.2005.02.001
[2] . Oyewole AO, Birch-Machin MA. Mitochondria-targeted antioxidants. Faseb Journal, 2015; 29, 4766-71. doi:  10.1096/fj.15-275404
[3] . Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell B, 2007; 39, 44-84. doi:  10.1016/j.biocel.2006.07.001
[4] . Golden TR, Melov S. Mitochondrial DNA mutations, oxidative stress, and aging. Mech Ageing Dev, 2001; 122, 1577-89. doi:  10.1016/S0047-6374(01)00288-3
[5] . Jomova K, Vondrakova D, Lawson M, et al. Metals, oxidative stress and neurodegenerative disorders. Mol. Cell Biochem, 2010; 345, 91-104. doi:  10.1007/s11010-010-0563-x
[6] . Cui X, Zuo PP, Zhang Q, et al. Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice:protective effects of R-alpha-lipoic acid. J Neurosci Res, 2006; 84, 647-54. doi:  10.1002/(ISSN)1097-4547
[7] . Cui X, Wang LN, Zuo PP, et al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology, 2004; 5, 317-25. doi:  10.1007/s10522-004-2570-3
[8] . Kumar A, Prakash A, Dogra S. Naringin alleviates cognitive impairment, mitochondrial dysfunction and oxidative stress induced by D-galactose in mice. Food Chem Toxicol, 2010; 48, 626-32. doi:  10.1016/j.fct.2009.11.043
[9] . Anand KV, Jaabir MSM, Thomas PA, et al. Protective role of chrysin against oxidative stress in d-galactose-induced aging in an experimental rat model. Geriatr Gerontol Int, 2012; 12, 741-50. doi:  10.1111/ggi.2012.12.issue-4
[10] . Lu J, Zheng YL, Luo L, et al. Quercetin reverses D-galactose induced neurotoxicity in mouse brain. Behav Brain Res, 2006; 171, 251-60. doi:  10.1016/j.bbr.2006.03.043
[11] . Judge S, Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol, 2007; 292, C1983-92. doi:  10.1152/ajpcell.00285.2006
[12] . Navarro A, Boveris A. Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondriatargeted antioxidants. Adv Drug Deliver Rev, 2008; 60, 1534-44. doi:  10.1016/j.addr.2008.05.002
[13] . Szeto HH. Mitochondria-targeted peptide antioxidants:novel neuroprotective agents. AAPS J, 2006; 8, E521-31. doi:  10.1208/aapsj080362
[14] . Leo EEM, Fernández JJA, Campos MRS. Biopeptides with antioxidant and anti-inflammatory potential in the prevention and treatment of diabesity disease, Biomed Pharmacother, 2016; 83, 816-26. doi:  10.1016/j.biopha.2016.07.051
[15] . Torres-Fuentes C, Contreras MM, Recio I, et al. Identification and characterization of antioxidant peptides from chickpea protein hydrolysates. Food Chem, 2015; 180, 194-202. doi:  10.1016/j.foodchem.2015.02.046
[16] . Su GW, Zhao TT, Zhao YQ, et al. Effect of anchovy (Coilia mystus) protein hydrolysate and its Maillard reaction product on combating memory-impairment in mice. Food Res Int, 2016; 82, 112-20. doi:  10.1016/j.foodres.2016.01.022
[17] . Abenavoli L, Capasso R, Milic N, et al. Milk thistle in liver diseases:Past, present, future. Phytother Res, 2010; 24, 1423-32. doi:  10.1002/ptr.v24:10
[18] . Loguercio C, Festi D. Silybin and the liver:From basic research to clinical practice. World J. Gastroentero, 2011; 17, 2288-301. https://www.wjgnet.com/1007-9327/full/v17/i18/2288-T5.htm
[19] . Xu DF, Zhang WM, Shi JS, et al. Advance in the study and utilization of domestic resoure of Silybum marianum. Food Res Dev, 2007; 28, 157-61. (In Chinese) doi:  10.1007/s10668-015-9698-y
[20] . Zhu SY, Dong Y, Chen XD, et al. Protein and amino acid composition of milk thistle meal and functional properties. Journal of the Chinese Cereals and Oils Association, 2011; 26, 71-4. (In Chinese) http://d.wanfangdata.com.cn/Periodical_zglyxb201108016.aspx
[21] . Zhu SY, Dong Y, Tu J, et al. Amino acid composition and in vitro digestibility of protein isolates from Silybum marianum. J Food Agric Environ, 2013; 11, 136-40. http://world-food.net/amino-acid-composition-and-in-vitro-digestibility-of-protein-isolates-from-silybum-marianum/
[22] . Zhu SY, Dong Y, Zhang HH, et al. Enzymatic Hydrolysis of Milk Thistle Cake Protein and Antioxidation of Hydrolysate. Journal of the Chinese Cereals and Oils Association, 2011; 26, 68-72. (In Chinese) http://www.currentscience.ac.in/Volumes/113/03/0500.pdf
[23] . Zhu SY, Sha S, Qin YY, et al. Protective effect of Silybum marianum oligopeptides on mice liver mitochondria injury. Journal of the Chinese Cereals and Oils Association, 2015; 30, 97-101. (In Chinese) http://en.cnki.com.cn/Article_en/CJFDTotal-ZLYX201501020.htm
[24] . Zhu SY, Dong Y. Optimized technology for extracting milk thistle cake protein by response surface methodology. Science and Technology of Food Industry, 2011; 32, 256-8. (In Chinese) doi:  10.1007/s00253-013-5002-y
[25] . Tang YH, Gao C, Xing MY, et al. Quercetin prevents ethanol-induced dyslipidemia and mitochondrial oxidative damage. Food Chem Toxicol, 2012; 50, 1194-200. doi:  10.1016/j.fct.2012.02.008
[26] . Zhu SY, Dong Y, Tu J, et al. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacogn Mag, 2014; 10, S92-9. doi:  10.4103/0973-1296.127353
[27] . Zhou XM, Cao YL, Dou DQ. Protective effect of ginsenoside-Re against cerebral ischemia/reperfusion damage in rats. Biol Pharm Bull, 2006; 29, 2502-5. doi:  10.1248/bpb.29.2502
[28] . Paradies G, Petrosillo G, Paradies V, et al. Mitochondrial dysfunction in brain aging:role of oxidative stress and cardiolipin. Neurochem Int, 2011; 58, 447-57. doi:  10.1016/j.neuint.2010.12.016
[29] . Ho SC, Liu JH, Wu RYY. Establishment of the mimetic aging effect in mice caused by D-galactose. Biogerontology, 2003; 4, 15-8. doi:  10.1023/A:1022417102206
[30] . Shen YX, Xu SY, Wei W, et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose. J Pineal Res, 2002; 32, 173-8. doi:  10.1034/j.1600-079x.2002.1o850.x
[31] . Zhang XL, An LJ, Bao YM, et al. D-galactose administration induces memory loss and energy metabolism disturbance in mice:protective effects of catalpol. Food Chem Toxicol, 2008; 46, 2888-94. doi:  10.1016/j.fct.2008.05.032
[32] . Kumar A, Dogra S, Prakash A. Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-galactose induced senescence in mice. N-S Arch Pharmacol, 2009; 380, 431-41. doi:  10.1007/s00210-009-0442-8
[33] . Shayganni E, Bahmani M, Asgary S, et al. Inflammaging and cardiovascular disease:management by medicinal plants. Phytomedicine, 2016; 23, 1119-26. doi:  10.1016/j.phymed.2015.11.004
[34] . Ren Y, Yang XS, Niu XW, et al. Chemical characterization of the avenanthramide-rich extract from oat and its effect on D-galactose-induced oxidative stress in mice. J Agr Food Chem, 2011; 59, 206-11. doi:  10.1021/jf103938e
[35] . Nasri H, Rafieian-Kopaei M. Medicinal plants and antioxidants:Why they are not always beneficial? Iran J Public Public Health, 2014; 43, 255-7. https://www.ncbi.nlm.nih.gov/pubmed/26060753
[36] . Rafieian-Kopaei M, Baradaran A, Rafieian M. Oxidative stress and the paradoxical effects of antioxidants. J Res Med Sci, 2013; 18, 628. https://www.ncbi.nlm.nih.gov/pubmed/24516501
[37] . Abuja PM, Albertini R. Methods for monitoring oxidative stress, lipid peroxidation and oxidation resistance of lipoproteins. Clin Chim Acta, 2001; 306, 1-17. doi:  10.1016/S0009-8981(01)00393-X
[38] . Khan MZ, Atlas N, Nawaz W. Neuroprotective effects of Caralluma tuberculata on ameliorating cognitive impairment in a D-galactose-induced mouse model. Biomed Pharmacother, 2016; 84, 387-94. doi:  10.1016/j.biopha.2016.09.055
[39] . Tian Y, Zou B, Yang L, et al. High molecular weight persimmon tannin ameliorates cognition deficits and attenuates oxidative damage in senescent mice induced by D-galactose. Food Chem Toxicol, 2011; 49, 1728-36. doi:  10.1016/j.fct.2011.04.018
[40] . Garcia-Saez AJ. The secrets of the Bcl-2 family. Cell Death and Differ, 2012; 19, 1733-40. doi:  10.1038/cdd.2012.105
[41] . Schon EA, Manfredi G. Neuronal degeneration and mitochondrial dysfunction. J Clin Invest, 2003; 111, 303-12. doi:  10.1172/JCI200317741
[42] . Bhat AH, Dar KB, Anees S, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight, Biomed Pharmacother, 2015; 74, 101-10. doi:  10.1016/j.biopha.2015.07.025
[43] . Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol, 2000; 10, 369-77. doi:  10.1016/S0962-8924(00)01803-1
[44] . Harman D. The free radical theory of aging. Antioxid Redox Sign, 2003; 5, 557-61. doi:  10.1089/152308603770310202
[45] . Xu MY, Wang P, Sun YJ, et al. Joint toxicity of chlorpyrifos and cadmium on the oxidative stress and mitochondrial damage in neuronal cells. Food Chem Toxicol, 2017; 103, 246-52. doi:  10.1016/j.fct.2017.03.013
[46] . Li JX, Tong CWC, Xu DQ, et al. Changes in membrane fluidity and lipid peroxidation of skeletal muscle mitochondria after exhausting exercise in rats. Eur J Appl Physiol, 1999; 80, 113-7. doi:  10.1007/s004210050566
[47] . Acharya MM, Katyare SS. Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain. Exp Neurol, 2005; 192, 79-88. doi:  10.1016/j.expneurol.2004.11.004