[1] OECD. SIDS Dossier on Synthetic Amorphous Silica and Silicates. 2004. https: //hpvchemicals. oecd. org/UI/handler. axd?id=81d3694a-a582-4fa8-a8f2-f771459b67ed, [2018-01-25].
[2] Dekkers S, Krystek P, Peters RJ, et al. Presence and risks of nanosilica in food products. Nanotoxicology, 2011; 5, 393-405. doi:  10.3109/17435390.2010.519836
[3] Dekkers S, Bouwmeester H, Bos PM, et al. Knowledge gaps in risk assessment of nanosilica in food:evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicology, 2013; 7, 367-77. doi:  10.3109/17435390.2012.662250
[4] World Health Organization (WHO). Evaluation of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Silicon dioxide, amorphous. 1985. http://apps.who.int/foodadditives-contaminants-jecfa-database/chemical.aspx?chemID=2462, [2018-01-25].
[5] Athinarayanan J, Periasamy VS, Alsaif MA, et al. Presence of nanosilica (E551) in commercial food products:TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells. Cell Biol Toxicol, 2014; 30, 89-100. doi:  10.1007/s10565-014-9271-8
[6] Hansen SF, Michelson ES, Kamper A, et al. Categorization framework to aid exposure assessment of nanomaterials in consumer products. Ecotoxicology, 2008; 17, 438-47. doi:  10.1007/s10646-008-0210-4
[7] Lim JH, Sisco P, Mudalige TK, et al. Detection and characterization of SiO2 and TiO2 naostructures in dietary supplements. J Agric Food Chem, 2015; 63, 3144-52. doi:  10.1021/acs.jafc.5b00392
[8] Xu L, Liu Y, Bai R, et al. Applications and toxicological issues surrounding nanotechnology in the food industry. Pure Appl Chem, 2010; 82, 349-72. doi:  10.1351/PAC-CON-09-05-09
[9] Tarantini A, Huet S, Jarry G, et al. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 1:oral route. Environ Mol Mutagen, 2015; 56, 218-27. doi:  10.1002/em.v56.2
[10] EFSA. Scientific opionion on Guidance on the risk assessment of the applicaiton of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal, 2011; 9, 2140. doi:  10.2903/j.efsa.2011.2140
[11] Food and Agriculture Organization of the United Nations and World Health Organization (FAO and WHO). FAO/WHO technical paper: State of the art on the initiatives and activities relevant to risk assessment and risk management of nanotechnologies in the food and agriculture sectors. Rome. FAO/WHO. 2013; 1-46.
[12] Food and Drug Administration (FDA). Guidance for Industry: Assessing the effects of significant manufacturing process changes, including emerging technologies, on the safety and regulatory status of food ingredients and food contact substaces, including food ingredients that are color additives. USA FDA. 2014; 1-29.
[13] OECD. OECD Environment, Health and Safety Publications Series on the Safety of Manufactured Nanomaterials. No. 25: Guidance Manual for the Testing of Manufactured Nanomaterials: OECD's sponsorship programme; first revision. Organisation for Economic Cooperation and Development. Paris, 2010; 1-92.
[14] Ruby MV, Davis A, Schoof R, et al. Estimation of Lead and Arsenic Bioavailability Using a Physiologically Based Extraction Test. Environ Sci Technol, 1996; 30, 422-30. doi:  10.1021/es950057z
[15] Cave MR, Wragg J, Palumbo B, et al. Measurement of the Bioaccessibility of Arsenic in UK Soils. R & D Technical Report P5-062/TR02. Environment Agency, Bristol, 2003; 1-108. doi:  10.1007/s10653-010-9324-8
[16] OECD. OECD guidelines for the testing of chemicals, Section 4:Health Effects, Test No. 408:Repeated Dose 90-day Oral Toxicity Study in Rodents. Organisation for Economic Cooperation and Development, 1998; 1-10. http://www.oecd.org/env/ehs/testing/section4-health-effects.htm
[17] Magnuson BA, Jonaitis TS, Card JW. A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci, 2011; 76, R126-33. doi:  10.1111/jfds.2011.76.issue-6
[18] Gerloff K, Pereira DIA, Faria N, et al. Influence of simulated gastro-intestinal conditions on particle-induced cytotoxicity and interleukin-8 regulation in differentiated and undifferentiated Caco-2 cells. Nanotoxicology, 2013; 7, 353-66. doi:  10.3109/17435390.2012.662249
[19] Kim MK, Lee JA, Jo MR, et al. Bioavailability of Silica, Titanium Dioxide, and Zinc Oxide Nanoparticles in Rats. J Nanosci Nanotechnol, 2016; 16, 6580-6. doi:  10.1166/jnn.2016.12350
[20] Lee JA, Kim MK, Song JH, et al. Biokinetics of food additive silica nanoparticles and their interactions with food components. Colloids Surf B Biointerfaces, 2017; 150, 384-92. doi:  10.1016/j.colsurfb.2016.11.001
[21] Liu X, Sun J. Time-course effects of intravenously administrated silica nanoparticles on blood coagulation and endothelial function in rats. J Nanosci Nanotechnol, 2013; 13, 222-8. doi:  10.1166/jnn.2013.6910
[22] Nabeshi H, Yoshikawa T, Matsuyama K, et al. Amorphous nanosilicas induce consumptive coagulopathy after systemic exposure. Nanotechnology, 2012; 23, 045101. doi:  10.1088/0957-4484/23/4/045101
[23] Yoshida T, Yoshioka Y, Tochigi S, et al. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice. Part Fibre Toxicol, 2013; 10, 41. doi:  10.1186/1743-8977-10-41
[24] Menjo M, Yamaguchi S, Murata Y, et al. Responsiveness to thyroid hormone is enhanced in rat hepatocytes cultured as spheroids compared with that in monolayers:altered responsiveness to thyroid hormone possibly involves complex formed on thyroid hormone response elements. Thyroid, 1999; 9, 959-67. doi:  10.1089/thy.1999.9.959
[25] Cho WS, Choi M, Han BS, et al. Inflammatory mediators induced by intratracheal instillation of ultrafine amorphous silica particles. Toxicol Lett, 2007; 175, 24-33. doi:  10.1016/j.toxlet.2007.09.008
[26] Freire J, Ajona D, de Biurrun G, et al. Silica-induced chronic inflammation promotes lung carcinogenesis in the context of an immunosuppressive microenvironment. Neoplasia, 2013; 15, 913-24. doi:  10.1593/neo.13310
[27] Langley R, Mishra N, Peña-Philippides J, et al. Granuloma formation induced by low-dose chronic silica inhalation is associated with an anti-apoptotic response in Lewis rats. J Toxicol Environ Health A, 2010; 73, 669-83. doi:  10.1080/15287390903578521
[28] Lee JA, Kim MK, Paek HJ, et al. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats. Int J Nanomedicine, 2014; 9(Suppl 2), 251-60.
[29] So SJ, Jang IS, Han CS. Effect of micro/nano silica particle feeding for mice. J Nanosci Nanotechnol, 2008; 8, 5367-71. doi:  10.1166/jnn.2008.1347
[30] Yun JW, Kim SH, You JR, et al. Comparative toxicity of silicon dioxide, silver and iron oxide nanoparticles after repeated oral administration to rats. J Appl Toxicol, 2015; 35, 681-93. doi:  10.1002/jat.v35.6
[31] Paek HJ, Chung HE, Lee JA, et al. Quantitative Determination of Silica Nanoparticles in Biological Matrices and Their Pharmacokinetics and Toxicokinetics in Rats. Sci Adv Mater, 2014; 6, 1605-10. doi:  10.1166/sam.2014.1817
[32] van der Zande M, Vandebriel RJ, Groot MJ, et al. Sub-chronic toxicity study in rats orally exposed to nanostructured silica. Part Fibre Toxicol, 2014; 11, 8. doi:  10.1186/1743-8977-11-8
[33] Fu C, Liu T, Li L, et al. The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes. Biomaterials, 2013; 34, 2565-75. doi:  10.1016/j.biomaterials.2012.12.043
[34] Lin B, Xi Z, Zhang Y, et al. Primary study on the hepatotoxicity and nephrotoxicity of rats induced by three kinds of nanomaterials. Journal of Hygiene Research, 2008; 37, 651-3.
[35] Kim YR, Lee SY, Lee EJ, et al. Toxicity of colloidal silica nanoparticles administered orally for 90 days in rats. Int J Nanomedicine, 2014; 9(Suppl 2), 67-78.
[36] Buesen R, Landsiedel R, Sauer UG, et al. Effects of SiO2, ZrO2, and BaSO4 nanomaterials with or without surface functionalization upon 28-day oral exposure to rats. Arch Toxicol, 2014; 88, 1881-906. doi:  10.1007/s00204-014-1337-0
[37] Kim JH, Kim CS, Ignacio RMC, et al. Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. Int J Nanomedicine, 2014; 9(Suppl 2), 183-93.
[38] Cristo LD, Movia D, Bianchi MG, et al. Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells. Toxicol Sci, 2016; 150, 40-53. doi:  10.1093/toxsci/kfv258
[39] Tarantini A, Huet S, Jarry G, et al. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 1:oral route. Environ Mol Mutagen, 2015; 56, 218-27. doi:  10.1002/em.v56.2
[40] Hofmann T, Schneider S, Wolterbeek A, et al. Prenatal toxicity of synthetic amorphous silica nanomaterial in rats. Reprod Toxicol, 2015; 56, 141-6. doi:  10.1016/j.reprotox.2015.04.006
[41] Wolterbeek A, Oosterwijk T, Schneider S, et al. Oral two-generation reproduction toxicity study with NM-200 synthetic amorphous silica in Wistar rats. Reprod Toxicol, 2015; 56, 147-54. doi:  10.1016/j.reprotox.2015.03.006
[42] Narciso L, Tassinari R, Cordelli E, et al. Effects of synthetic amorphous silica nanoparticle (NM-203) on male and female reproductive systems following 90-days repeated-dose oral administration in rat. Reprod Toxicol, 2016; 64, 42-3. https://www.researchgate.net/profile/Patrizia_Eleuteri2
[43] Peters R, Kramer E, Oomen AG, et al. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive. Acs Nano, 2012; 6, 2441-51. doi:  10.1021/nn204728k
[44] Sakai-Kato K, Hidaka M, Un K, et al. Physicochemical properties and in vitro intestinal permeability properties and intestinal cell toxicity of silica particles, performed in simulated gastrointestinal fluids. Biochim Biophys Acta, 2014; 1840, 1171-80. doi:  10.1016/j.bbagen.2013.12.014