[1] Barbari C, Fontaine T, Parajuli P, et al. Immunotherapies and combination strategies for immuno-oncology. Int J Mol Sci, 2020; 21, 5009. doi:  10.3390/ijms21145009
[2] Meric-Bernstam F, Larkin J, Tabernero J, et al. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet, 2021; 397, 1010−22. doi:  10.1016/S0140-6736(20)32598-8
[3] Fu Y, Lin Q, Zhang ZR, et al. Therapeutic strategies for the costimulatory molecule OX40 in T-cell-mediated immunity. Acta Pharm Sin B, 2020; 10, 414−33. doi:  10.1016/j.apsb.2019.08.010
[4] Aspeslagh S, Postel-Vinay S, Rusakiewicz S, et al. Rationale for anti-OX40 cancer immunotherapy. Eur J Cancer, 2016; 52, 50−66. doi:  10.1016/j.ejca.2015.08.021
[5] Linch SN, McNamara MJ, Redmond WL. OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front Oncol, 2015; 5, 34.
[6] Alves Costa Silva C, Facchinetti F, Routy B, et al. New pathways in immune stimulation: targeting OX40. ESMO Open, 2020; 5, e000573. doi:  10.1136/esmoopen-2019-000573
[7] Lu XJ. OX40 and OX40L interaction in cancer. Curr Med Chem, 2021; 28, 5659−73. doi:  10.2174/0929867328666201229123151
[8] Unsinger J, Walton AH, Blood T, et al. Frontline science: OX40 agonistic antibody reverses immune suppression and improves survival in sepsis. J Leukoc Biol, 2021; 109, 697−708. doi:  10.1002/JLB.5HI0720-043R
[9] Cebada J, Perez-Santos M, Bandala C, et al. OX40 agonists for cancer treatment: a patent review. Expert Opin Ther Pat, 2021; 31, 81−90. doi:  10.1080/13543776.2021.1825688
[10] Sagiv-Barfi I, Czerwinski DK, Levy S, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med, 2018; 10, eaan4488. doi:  10.1126/scitranslmed.aan4488
[11] Alvim RG, Georgala P, Nogueira L, et al. Combined OX40 agonist and PD-1 inhibitor immunotherapy improves the efficacy of vascular targeted photodynamic therapy in a urothelial tumor model. Molecules, 2021; 26, 3744. doi:  10.3390/molecules26123744
[12] Zhang QW, Guo XX, Zhou Y, et al. OX40 agonist combined with irreversible electroporation synergistically eradicates established tumors and drives systemic antitumor immune response in a syngeneic pancreatic cancer model. Am J Cancer Res, 2021; 11, 2782−801.
[13] Scherwitzl I, Opp S, Hurtado AM, et al. Sindbis virus with Anti-OX40 overcomes the immunosuppressive tumor microenvironment of low-immunogenic tumors. Mol Ther Oncolytics, 2020; 17, 431−47. doi:  10.1016/j.omto.2020.04.012
[14] Chu YH, Li RT, Qian LY, et al. Tumor eradicated by combination of imiquimod and OX40 agonist for in situ vaccination. Cancer Sci, 2021; 112, 4490−500. doi:  10.1111/cas.15145
[15] Caldeira JC, Perrine M, Pericle F, et al. Virus-like particles as an immunogenic platform for cancer vaccines. Viruses, 2020; 12, 488. doi:  10.3390/v12050488
[16] Ong HK, Tan WS, Ho KL. Virus like particles as a platform for cancer vaccine development. PeerJ, 2017; 5, e4053. doi:  10.7717/peerj.4053
[17] Hao Y, Gu ZL, Yu ZF, et al. Photodynamic therapy in combination with the hepatitis B core virus-like particles (HBc VLPs) to prime anticancer immunity for colorectal cancer treatment. Cancers (Basel), 2022; 14, 2724. doi:  10.3390/cancers14112724
[18] Bin Mohamed Suffian IF, Garcia-Maya M, Brown P, et al. Yield Optimisation of hepatitis B virus core particles in E. coli expression system for drug delivery applications. Sci Rep, 2017; 7, 43160. doi:  10.1038/srep43160
[19] Pumpens P, Grens E. HBV core particles as a carrier for B cell/T cell epitopes. Intervirology, 2001; 44, 98−114. doi:  10.1159/000050037
[20] Ji M, Zhu J, Xie XX, et al. A novel rapid modularized hepatitis B core virus-like particle-based platform for personalized cancer vaccine preparation via fixed-point coupling. Nanomed: Nanotechnol, Biol Med, 2020; 28, 102223.
[21] Shan WJ, Zheng HP, Fu GF, et al. Bioengineered nanocage from HBc protein for combination cancer immunotherapy. Nano Lett, 2019; 19, 1719−27. doi:  10.1021/acs.nanolett.8b04722
[22] Wang YR, Wang Y, Kang N, et al. Construction and immunological evaluation of CpG-Au@HBc virus-like nanoparticles as a potential vaccine. Nanoscale Res Lett, 2016; 11, 338. doi:  10.1186/s11671-016-1554-y
[23] Shan WJ, Zhang DL, Wu YL, et al. Modularized peptides modified HBc virus-like particles for encapsulation and tumor-targeted delivery of doxorubicin. Nanomed: Nanotechnol, Biol Med, 2018; 14, 725−34.
[24] Cheng KM, Du T, Li Y, et al. Dual-antigen-loaded hepatitis B virus core antigen virus-like particles stimulate efficient immunotherapy against melanoma. ACS Appl Mater Interfaces, 2020; 12, 53682−90. doi:  10.1021/acsami.0c16012
[25] Rana J, Biswas M. Regulatory T cell therapy: current and future design perspectives. Cell Immunol, 2020; 356, 104193. doi:  10.1016/j.cellimm.2020.104193
[26] Lei X, Lei Y, Li JK, et al. Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett, 2020; 470, 126−33. doi:  10.1016/j.canlet.2019.11.009
[27] Homet Moreno B, Mok S, Comin-Anduix B, et al. Combined treatment with dabrafenib and trametinib with immune-stimulating antibodies for BRAF mutant melanoma. Oncoimmunology, 2016; 5, e1052212. doi:  10.1080/2162402X.2015.1052212
[28] Virani NA, Thavathiru E, McKernan P, et al. Anti-CD73 and anti-OX40 immunotherapy coupled with a novel biocompatible enzyme prodrug system for the treatment of recurrent, metastatic ovarian cancer. Cancer Lett, 2018; 425, 174−82. doi:  10.1016/j.canlet.2018.03.027
[29] Hebb JPO, Mosley AR, Vences-Catalán F, et al. Administration of low-dose combination anti-CTLA4, anti-CD137, and anti-OX40 into murine tumor or proximal to the tumor draining lymph node induces systemic tumor regression. Cancer Immunol Immunother, 2018; 67, 47−60. doi:  10.1007/s00262-017-2059-y
[30] Raskov H, Orhan A, Christensen JP, et al. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer, 2021; 124, 359−67. doi:  10.1038/s41416-020-01048-4
[31] van der Leun AM, Thommen DS, Schumacher TN. CD8+ T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer, 2020; 20, 218−32. doi:  10.1038/s41568-019-0235-4
[32] Zander R, Schauder D, Xin G, et al. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity, 2019; 51, 1028−42. e4.
[33] Borst J, Ahrends T, Bąbała N, et al. CD4+ T cell help in cancer immunology and immunotherapy. Nat Rev Immunol, 2018; 18, 635−47. doi:  10.1038/s41577-018-0044-0
[34] Binnewies M, Mujal AM, Pollack JL, et al. Unleashing type-2 dendritic cells to drive protective antitumor CD4+ T cell immunity. Cell, 2019; 177, 556−71. e16.
[35] Gramaglia I, Weinberg AD, Lemon M, et al. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol, 1998; 161, 6510−7. doi:  10.4049/jimmunol.161.12.6510
[36] Song JX, So T, Croft M. Activation of NF-κB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol, 2008; 180, 7240−8. doi:  10.4049/jimmunol.180.11.7240
[37] Kitamura N, Murata S, Ueki T, et al. OX40 costimulation can abrogate Foxp3+ regulatory T cell-mediated suppression of antitumor immunity. Int J Cancer, 2009; 125, 630−8. doi:  10.1002/ijc.24435
[38] Zhang XL, Xiao X, Lan PX, et al. OX40 Costimulation inhibits Foxp3 expression and treg induction via BATF3-dependent and independent mechanisms. Cell Rep, 2018; 24, 607−18. doi:  10.1016/j.celrep.2018.06.052
[39] Marabelle A, Kohrt H, Sagiv-Barfi I, et al. Depleting tumor-specific Tregs at a single site eradicates disseminated tumors. J Clin Invest, 2013; 123, 2447−63. doi:  10.1172/JCI64859
[40] Bulliard Y, Jolicoeur R, Zhang JM, et al. OX40 engagement depletes intratumoral Tregs via activating FcγRs, leading to antitumor efficacy. Immunol Cell Biol, 2014; 92, 475−80. doi:  10.1038/icb.2014.26
[41] Pumpens P, Grens E. Hepatitis B core particles as a universal display model: a structure-function basis for development. FEBS Lett, 1999; 442, 1−6. doi:  10.1016/S0014-5793(98)01599-3
[42] Mao CK, Gorbet MJ, Singh A, et al. In situ vaccination with nanoparticles for cancer immunotherapy: understanding the immunology. Int J Hyperthermia, 2020; 37, 4−17. doi:  10.1080/02656736.2020.1810333
[43] Nastiuk KL, Krolewski JJ. Opportunities and challenges in combination gene cancer therapy. Adv Drug Deliv Rev, 2016; 98, 35−40. doi:  10.1016/j.addr.2015.12.005
[44] Messenheimer DJ, Jensen SM, Afentoulis ME, et al. Timing of PD-1 blockade is critical to effective combination immunotherapy with anti-OX40. Clin Cancer Res, 2017; 23, 6165−77. doi:  10.1158/1078-0432.CCR-16-2677
[45] Shrimali RK, Ahmad S, Verma V, et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res, 2017; 5, 755−66. doi:  10.1158/2326-6066.CIR-17-0292
[46] Choi Y, Shi YY, Haymaker CL, et al. T-cell agonists in cancer immunotherapy. J Immunother Cancer, 2020; 8, e000966. doi:  10.1136/jitc-2020-000966