[1] Clarkson TW, Vyas JB, Ballatori N. Mechanisms of mercury disposition in the body. Am J Ind Med, 2007; 50, 757−64. doi:  10.1002/ajim.20476
[2] Risher JF. Concise International Chemical Assessment Document 50: Elemental mercury and inorganic mercury compounds: human health aspects. Concise International Chemical Assessment Document 50. 2003; 678-81.
[3] Yang LX, Zhang YY, Wang FF, et al. Toxicity of mercury: Molecular evidence. Chemosphere, 2020; 245, 125586. doi:  10.1016/j.chemosphere.2019.125586
[4] He K, Xun PC, Liu K, et al. Mercury exposure in young adulthood and incidence of diabetes later in life: the CARDIA trace element study. Diabetes Care, 2013; 36, 1584−9. doi:  10.2337/dc12-1842
[5] Chen YW, Huang CF, Tsai KS, et al. Methylmercury induces pancreatic β-cell apoptosis and dysfunction. Chem Res Toxicol, 2006; 19, 1080−5. doi:  10.1021/tx0600705
[6] Chen YW, Huang CF, Tsai KS, et al. The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic β-cell dysfunction in vitro and in vivo. Diabetes, 2006; 55, 1614−24. doi:  10.2337/db06-0029
[7] Othman MS, Safwat G, Aboulkhair M, et al. The potential effect of berberine in mercury-induced hepatorenal toxicity in albino rats. Food Chem Toxicol, 2014; 69, 175−81. doi:  10.1016/j.fct.2014.04.012
[8] Ansar S, Iqbal M. Protective effect of diallylsulphide against mercuric chloride-induced hepatic injury in rats. Hum Exp Toxicol, 2016; 35, 1305−11. doi:  10.1177/0960327116629723
[9] Zalups RK. Molecular interactions with mercury in the kidney. Pharmacol Rev, 2000; 52, 113−43.
[10] Zalups RK, Joshee L, Bridges CC. Novel Hg2+-induced nephropathy in rats and mice lacking Mrp2: evidence of axial heterogeneity in the handling of Hg2+ along the proximal tubule. Toxicol Sci, 2014; 142, 250−60. doi:  10.1093/toxsci/kfu171
[11] Oliveira VA, Favero G, Stacchiotti A, et al. Acute mercury exposition of virgin, pregnant, and lactating rats: Histopathological kidney and liver evaluations. Environ Toxicol, 2017; 32, 1500−12. doi:  10.1002/tox.22370
[12] Berlin M, Zalups RK, Fowler BA. Mercury. In: Nordberg GF, Fowler BA, Nordberg M, et al. Handbook on the Toxicology of Metals. 3rd ed. Academic Press. 2007, 675-729.
[13] Vas J, Monestier M. Immunology of mercury. Ann N Y Acad Sci, 2008; 1143, 240−67. doi:  10.1196/annals.1443.022
[14] Schiraldi M, Monestier M. How can a chemical element elicit complex immunopathology? Lessons from mercury-induced autoimmunity. Trends Immunol, 2009; 30, 502−9. doi:  10.1016/j.it.2009.07.005
[15] Nakashima I, Pu MY, Nishizaki A, et al. Redox mechanism as alternative to ligand binding for receptor activation delivering disregulated cellular signals. J Immunol, 1994; 152, 1064−71. doi:  10.4049/jimmunol.152.3.1064
[16] Whitekus MJ, Santini RP, Rosenspire AJ, et al. Protection against CD95-mediated apoptosis by inorganic mercury in Jurkat T cells. J Immunol, 1999; 162, 7162−70. doi:  10.4049/jimmunol.162.12.7162
[17] McCabe MJ Jr, Whitekus MJ, Hyun J, et al. Inorganic mercury attenuates CD95-mediated apoptosis by interfering with formation of the death inducing signaling complex. Toxicol Appl Pharmacol, 2003; 190, 146−56. doi:  10.1016/S0041-008X(03)00159-5
[18] Cariccio VL, Samà A, Bramanti P, et al. Mercury involvement in neuronal damage and in neurodegenerative diseases. Biol Trace Elem Res, 2019; 187, 341−56. doi:  10.1007/s12011-018-1380-4
[19] Liu HH, Zhang CC, Wen FL, et al. Effects of low-dose mercury exposure in newborns on mRNA expression profiles. Bull Environ Contam Toxicol, 2021; 107, 975−81. doi:  10.1007/s00128-021-03249-w
[20] Stratakis N, Conti DV, Borras E, et al. Association of fish consumption and mercury exposure during pregnancy with metabolic health and inflammatory biomarkers in children. JAMA Netw Open, 2020; 3, e201007. doi:  10.1001/jamanetworkopen.2020.1007
[21] Li J, Yen C, Liaw D, et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 1997; 275, 1943−7. doi:  10.1126/science.275.5308.1943
[22] Chen CY, Chen JY, He LN, et al. PTEN: tumor suppressor and metabolic regulator. Front Endocrinol, 2018; 9, 338. doi:  10.3389/fendo.2018.00338
[23] Worby CA, Dixon JE. PTEN. Annu Rev Biochem, 2014; 83, 641−69. doi:  10.1146/annurev-biochem-082411-113907
[24] Downes CP, Ross S, Maccario H, et al. Stimulation of PI 3-kinase signaling via inhibition of the tumor suppressor phosphatase, PTEN. Adv Enzyme Regul, 2007; 47, 184−94. doi:  10.1016/j.advenzreg.2006.12.018
[25] Xu F, Na LX, Li YF, et al. RETRACTED ARTICLE: Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci, 2020; 10, 54. doi:  10.1186/s13578-020-00416-0
[26] Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol, 2014; 6, a016295. doi:  10.1101/cshperspect.a016295
[27] Kang SJ, Tanaka T, Kishimoto T. Therapeutic uses of anti-interleukin-6 receptor antibody. Int Immunol, 2015; 27, 21−9. doi:  10.1093/intimm/dxu081
[28] Ministry of Health of the People's Republic of China. Specifications of air sampling for hazardous substances monitoring in the workplace, GBZ 159-2004. Beijing: People's Medical Publishing House, 2006. (In Chinese
[29] Ministry of Health of the People's Republic of China. Workplace air - Determination of toxic substances - Part 18: Mercury and its compounds, GBZ/T 160.14-2004. Beijing, 2004. (In Chinese
[30] Ministry of Health of the People's Republic of China. Biological limit value for occupational exposure to mercury, WS/T 265-2006. Beijing: People's Medical Publishing House, 2007. (In Chinese
[31] Ministry of Health of the People's Republic of China. Urine—Determination of mercury—Cold atomic absorption spectrometric method-Ⅱ—Acidic stannous chloride reduction method, WS/T 26-1996. Beijing: Standards Press of China, 1997. (In Chinese
[32] Ministry of Health of the People's Republic of China. Urine—determination of creatinine—spectrophotometric method, WS/T 97-1996. Beijing: Standards Press of China, 1997. (In Chinese
[33] Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol, 2022; 221, 1428−38. doi:  10.1016/j.ijbiomac.2022.09.129
[34] Elinder CG, Barregard L. Renal effects of exposure to metals. In: Nordberg GF, Costa M. Handbook on the Toxicology of Metals. 5th ed. Academic Press. 2022, 485-506.
[35] Vanholder RC, Praet MM, Pattyn PA, et al. Dissociation of glomerular filtration and renal blood flow in HgCl2-induced acute renal failure. Kidney Int, 1982; 22, 162−70. doi:  10.1038/ki.1982.148
[36] McDowell EM, Nagle RB, Zalme RC, et al. Studies on the pathophysiology of acute renal failure. I. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch B Cell Pathol, 1976; 22, 173−96. doi:  10.1007/BF02889215
[37] Suzuki A, De La Pompa JL, Stambolic V, et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr Biol, 1998; 8, 1169−78. doi:  10.1016/S0960-9822(07)00488-5
[38] Hao LS, Zhang XL, An JY, et al. PTEN expression is down-regulated in liver tissues of rats with hepatic fibrosis induced by biliary stenosis. APMIS, 2009; 117, 681−91. doi:  10.1111/j.1600-0463.2009.02515.x
[39] Horie Y, Suzuki A, Kataoka E, et al. Hepatocyte-specific Pten deficiency results in steatohepatitis and hepatocellular carcinomas. J Clin Invest, 2004; 113, 1774−83. doi:  10.1172/JCI20513
[40] Mahimainathan L, Das F, Venkatesan B, et al. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes, 2006; 55, 2115−25. doi:  10.2337/db05-1326
[41] Peyrou M, Bourgoin L, Foti M. PTEN in liver diseases and cancer. World J Gastroenterol, 2010; 16, 4627−33. doi:  10.3748/wjg.v16.i37.4627
[42] Stiles B, Wang Y, Stahl A, et al. Liver-specific deletion of negative regulator Pten results in fatty liver and insulin hypersensitivity. Proc Natl Acad Sci USA, 2004; 101, 2082−7. doi:  10.1073/pnas.0308617100
[43] Wang QL, Tao YY, Xie HD, et al. Fuzheng Huayu recipe, a traditional Chinese compound herbal medicine, attenuates renal interstitial fibrosis via targeting the miR-21/PTEN/AKT axis. J Integr Med, 2020; 18, 505−13. doi:  10.1016/j.joim.2020.08.006
[44] Lin JS, Shi YY, Peng H, et al. Loss of PTEN promotes podocyte cytoskeletal rearrangement, aggravating diabetic nephropathy. J Pathol, 2015; 236, 30−40. doi:  10.1002/path.4508
[45] Samarakoon R, Helo S, Dobberfuhl AD, et al. Loss of tumour suppressor PTEN expression in renal injury initiates SMAD3‐and p53‐dependent fibrotic responses. J Pathol, 2015; 236, 421−32. doi:  10.1002/path.4538
[46] Wang YF, Wang X, Wang HZ, et al. PTEN protects kidney against acute kidney injury by alleviating apoptosis and promoting autophagy via regulating HIF1-α and mTOR through PI3K/Akt pathway. Exp Cell Res, 2021; 406, 112729. doi:  10.1016/j.yexcr.2021.112729
[47] Chen JK, Nagai K, Chen JC, et al. Phosphatidylinositol 3-kinase signaling determines kidney size. J Clin Invest, 2015; 125, 2429−44. doi:  10.1172/JCI78945
[48] Myers MP, Pass I, Batty IH, et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA, 1998; 95, 13513−8. doi:  10.1073/pnas.95.23.13513
[49] Sun H, Lesche R, Li DM, et al. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3, 4, 5, -trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA, 1999; 96, 6199−204. doi:  10.1073/pnas.96.11.6199
[50] Stambolic V, Suzuki A, De La Pompa JL, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell, 1998; 95, 29−39. doi:  10.1016/S0092-8674(00)81780-8
[51] Tanaka T, Narazaki M, Masuda K, et al. Regulation of IL-6 in Immunity and Diseases. Adv Exp Med Biol, 2016; 941, 79−88.
[52] Tong YL, Wang RL, Liu X, et al. Zuojin Pill ameliorates chronic atrophic gastritis induced by MNNG through TGF-β1/PI3K/Akt axis. J Ethnopharmacol, 2021; 271, 113893. doi:  10.1016/j.jep.2021.113893
[53] Zhou J, Zhong JY, Lin S, et al. Inhibition of PTEN activity aggravates post renal fibrosis in mice with ischemia reperfusion-induced acute kidney injury. Cell Physiol Biochem, 2017; 43, 1841−54. doi:  10.1159/000484070
[54] Dou L, Wang SY, Sui XF, et al. MiR-301a mediates the effect of IL-6 on the AKT/GSK pathway and hepatic glycogenesis by regulating PTEN expression. Cell Physiol Biochem, 2015; 35, 1413−24. doi:  10.1159/000373962