[1] Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers, 2017; 3, 17038. doi:  10.1038/nrdp.2017.38
[2] Luo WP, Li H, Ye F. Clinical therapeutic effects of probiotics in combination with antibiotics on periodontitis: a protocol for systematic review and meta-analysis. Medicine (Baltimore), 2021; 100, e23755. doi:  10.1097/MD.0000000000023755
[3] Chapple ILC, Van Der Weijden F, Doerfer C, et al. Primary prevention of periodontitis: managing gingivitis. J Clin Periodontol, 2015; 42 Suppl 16, S71-6.
[4] Catunda RQ, Levin L, Kornerup I, et al. Prevalence of periodontitis in young populations: a systematic review. Oral Health Prev Dent, 2019; 17, 195−202.
[5] Buset SL, Walter C, Friedmann A, et al. Are periodontal diseases really silent? A systematic review of their effect on quality of life. J Clin Periodontol, 2016; 43, 333−44. doi:  10.1111/jcpe.12517
[6] Liccardo D, Cannavo A, Spagnuolo G, et al. Periodontal disease: a risk factor for diabetes and cardiovascular disease. Int J Mol Sci, 2019; 20, 1414. doi:  10.3390/ijms20061414
[7] Page RC, Kornman KS. The pathogenesis of human periodontitis: an introduction. Periodontol 2000, 1997; 14, 9−11. doi:  10.1111/j.1600-0757.1997.tb00189.x
[8] Bartold PM, Van Dyke TE. An appraisal of the role of specific bacteria in the initial pathogenesis of periodontitis. J Clin Periodontol, 2019; 46, 6−11.
[9] Zhang JX, Yu JL, Dou JG, et al. The impact of smoking on subgingival plaque and the development of periodontitis: a literature review. Front Oral Health, 2021; 2, 751099. doi:  10.3389/froh.2021.751099
[10] Cekici A, Kantarci A, Hasturk H, et al. Inflammatory and immune pathways in the pathogenesis of periodontal disease. Periodontol 2000, 2014; 64, 57−80. doi:  10.1111/prd.12002
[11] Hajishengallis G. Immunomicrobial pathogenesis of periodontitis: keystones, pathobionts, and host response. Trends Immunol, 2014; 35, 3−11. doi:  10.1016/j.it.2013.09.001
[12] Van Dyke TE, Bartold PM, Reynolds EC. The nexus between periodontal inflammation and dysbiosis. Front Immunol, 2020; 11, 511. doi:  10.3389/fimmu.2020.00511
[13] Kornman KS. Commentary: periodontitis severity and progression are modified by various host and environmental factors. J Periodontol, 2014; 85, 1642−5. doi:  10.1902/jop.2014.140430
[14] Palazzo AF, Koonin EV. Functional long non-coding RNAs evolve from junk transcripts. Cell, 2020; 183, 1151−61. doi:  10.1016/j.cell.2020.09.047
[15] Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet, 2006; 15, R17−29. doi:  10.1093/hmg/ddl046
[16] Marques-Rocha JL, Samblas M, Milagro FI, et al. Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J, 2015; 29, 3595−611. doi:  10.1096/fj.14-260323
[17] Wang JH, Yan SS, Yang JH, et al. Non-coding RNAs in rheumatoid arthritis: from bench to bedside. Front Immunol, 2020; 10, 3129. doi:  10.3389/fimmu.2019.03129
[18] Qasim SSB, Al-Otaibi D, Al-Jasser R, et al. An evidence-based update on the molecular mechanisms underlying periodontal diseases. Int J Mol Sci, 2020; 21, 3829. doi:  10.3390/ijms21113829
[19] Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol, 2005; 6, 376−85.
[20] Treiber T, Treiber N, Meister G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat Rev Mol Cell Biol, 2019; 20, 5−20.
[21] Karreth FA, Pandolfi PP. ceRNA cross-talk in cancer: when ce-bling rivalries go awry. Cancer Discov, 2013; 3, 1113−21. doi:  10.1158/2159-8290.CD-13-0202
[22] Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the rosetta stone of a hidden RNA language? Cell, 2011; 146, 353−8.
[23] Acunzo M, Romano G, Wernicke D, et al. MicroRNA and cancer–a brief overview. Adv Biol Regul, 2015; 57, 1−9. doi:  10.1016/j.jbior.2014.09.013
[24] Wojciechowska A, Braniewska A, Kozar-Kaminska K. MicroRNA in cardiovascular biology and disease. Adv Clin Exp Med, 2017; 26, 865−74.
[25] Kara G, Calin GA, Ozpolat B. RNAi-based therapeutics and tumor targeted delivery in cancer. Adv Drug Deliv Rev, 2022; 182, 114113. doi:  10.1016/j.addr.2022.114113
[26] Mori MA, Ludwig RG, Garcia-Martin R, et al. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab, 2019; 30, 656−73. doi:  10.1016/j.cmet.2019.07.011
[27] Tuck AC, Tollervey D. A transcriptome-wide atlas of RNP composition reveals diverse classes of mRNAs and lncRNAs. Cell, 2013; 154, 996−1009. doi:  10.1016/j.cell.2013.07.047
[28] Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res, 2012; 22, 1775−89. doi:  10.1101/gr.132159.111
[29] Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 2021; 22, 96−118. doi:  10.1038/s41580-020-00315-9
[30] Wang YY, He L, Du Y, et al. The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling. Cell Stem Cell, 2015; 16, 413−25. doi:  10.1016/j.stem.2015.03.003
[31] Werner MS, Ruthenburg AJ. Nuclear fractionation reveals thousands of chromatin-tethered noncoding RNAs adjacent to active genes. Cell Rep, 2015; 12, 1089−98. doi:  10.1016/j.celrep.2015.07.033
[32] Sun QY, Hao QY, Prasanth KV. Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet, 2018; 34, 142−57. doi:  10.1016/j.tig.2017.11.005
[33] O'Leary VB, Ovsepian SV, Carrascosa LG, et al. PARTICLE, a triplex-forming long ncRNA, regulates locus-specific methylation in response to low-dose irradiation. Cell Rep, 2015; 11, 474−85. doi:  10.1016/j.celrep.2015.03.043
[34] Li XL, Subramanian M, Jones MF, et al. Long noncoding RNA PURPL suppresses basal p53 levels and promotes tumorigenicity in colorectal cancer. Cell Rep, 2017; 20, 2408−23. doi:  10.1016/j.celrep.2017.08.041
[35] Gonzalez I, Munita R, Agirre E, et al. A lncRNA regulates alternative splicing via establishment of a splicing-specific chromatin signature. Nat Struct Mol Biol, 2015; 22, 370−6. doi:  10.1038/nsmb.3005
[36] Salameh A, Lee AK, Cardó-Vila M, et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc Natl Acad Sci USA, 2015; 112, 8403−8. doi:  10.1073/pnas.1507882112
[37] Rashid F, Shah A, Shan G. Long non-coding RNAs in the cytoplasm. Genomics Proteomics Bioinformatics, 2016; 14, 73−80. doi:  10.1016/j.gpb.2016.03.005
[38] Yoon JH, Abdelmohsen K, Srikantan S, et al. LincRNA-p21 suppresses target mRNA translation. Mol Cell, 2012; 47, 648−55. doi:  10.1016/j.molcel.2012.06.027
[39] Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011; 147, 358−69. doi:  10.1016/j.cell.2011.09.028
[40] Franklin JL, Rankin CR, Levy S, et al. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA. Biochem Biophys Res Commun, 2013; 440, 99−104. doi:  10.1016/j.bbrc.2013.09.040
[41] Rogler LE, Kosmyna B, Moskowitz D, et al. Small RNAs derived from lncRNA RNase MRP have gene-silencing activity relevant to human cartilage-hair hypoplasia. Hum Mol Genet, 2014; 23, 368−82. doi:  10.1093/hmg/ddt427
[42] Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol, 2021; 220, e202009045. doi:  10.1083/jcb.202009045
[43] Shan C, Zhang YF, Hao XD, et al. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer, 2019; 18, 136. doi:  10.1186/s12943-019-1069-0
[44] Meng SJ, Zhou HC, Feng ZY, et al. CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer, 2017; 16, 94. doi:  10.1186/s12943-017-0663-2
[45] Xue C, Li GL, Zheng QX, et al. The functional roles of the circRNA/Wnt axis in cancer. Mol Cancer, 2022; 21, 108. doi:  10.1186/s12943-022-01582-0
[46] Jiang B, Zhang JF, Sun XB, et al. Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J Transl Med, 2022; 20, 5. doi:  10.1186/s12967-021-03195-5
[47] Gui CP, Liao B, Luo CG, et al. circCHST15 is a novel prognostic biomarker that promotes clear cell renal cell carcinoma cell proliferation and metastasis through the miR-125a-5p/EIF4EBP1 axis. Mol Cancer, 2021; 20, 169. doi:  10.1186/s12943-021-01449-w
[48] Li ZX, Cheng Y, Fu K, et al. Circ-PTPDC1 promotes the progression of gastric cancer through sponging Mir-139-3p by regulating ELK1 and functions as a prognostic biomarker. Int J Biol Sci, 2021; 17, 4285−304. doi:  10.7150/ijbs.62732
[49] Guo J, Zeng XM, Miao J, et al. MiRNA-218 regulates osteoclast differentiation and inflammation response in periodontitis rats through Mmp9. Cell Microbiol, 2019; 21, e12979.
[50] Kang LX, Miao YB, Jin Y, et al. Exosomal miR-205-5p derived from periodontal ligament stem cells attenuates the inflammation of chronic periodontitis via targeting XBP1. Immun Inflamm Dis, 2023; 11, e743. doi:  10.1002/iid3.743
[51] Li J, Li L, Wang XP, et al. Porphyromonas gingivalis inhibition of MicroRNA-205-5p expression modulates proinflammatory cytokines in gingival epithelial cells. Biochem Genet, 2020; 58, 566−79. doi:  10.1007/s10528-020-09957-y
[52] Li W, Wang JW, Hao WJ, et al. MicroRNA-543-3p down-regulates inflammation and inhibits periodontitis through KLF6. Biosci Rep, 2021; 41, BSR20210138. doi:  10.1042/BSR20210138
[53] Hua B, Xiang JB, Guo L, et al. MicroRNA-212-5p regulates the inflammatory response of periodontal ligament cells by targeting myeloid differentiation factor 88. Arch Oral Biol, 2020; 118, 104831. doi:  10.1016/j.archoralbio.2020.104831
[54] Zhang Z, Shuai Y, Zhou F, et al. PDLSCs regulate angiogenesis of periodontal ligaments via VEGF transferred by exosomes in periodontitis. Int J Med Sci, 2020; 17, 558−67. doi:  10.7150/ijms.40918
[55] Huang PC, Jia LH. MicroRNA-28-5p as a potential diagnostic biomarker for chronic periodontitis and its role in cell proliferation and inflammatory response. J Dent Sci, 2022; 17, 1501−9. doi:  10.1016/j.jds.2022.04.031
[56] Xia YR, Zhou KC, Sun MJ, et al. The miR-223-3p regulates pyroptosis through NLRP3-caspase 1-GSDMD signal axis in periodontitis. Inflammation, 2021; 44, 2531−42. doi:  10.1007/s10753-021-01522-y
[57] Liu Y, Yang J, Sun WB. Upregulation of IL-10 expression inhibits the proliferation of human periodontal ligament stem cells. Braz Oral Res, 2020; 34, e030. doi:  10.1590/1807-3107bor-2020.vol34.0030
[58] Guo RZ, Huang YP, Liu H, et al. Long non-coding RNA H19 participates in periodontal inflammation via activation of autophagy. J Inflamm Res, 2020; 13, 635−46. doi:  10.2147/JIR.S276619
[59] Huang NN, Li CX, Sun WJ, et al. Long non-coding RNA TUG1 participates in LPS-induced periodontitis by regulating miR-498/RORA pathway. Oral Dis, 2021; 27, 600−10. doi:  10.1111/odi.13590
[60] Yang QL, Liu P, Han YN, et al. Long noncoding RNA GAS5 alleviates the inflammatory response of human periodontal ligament stem cells by regulating the NF-κB signalling pathway. Eur J Orthod, 2022; 44, 669−78. doi:  10.1093/ejo/cjac030
[61] Cheng L, Fan YL, Cheng J, et al. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered, 2022; 13, 12691−705. doi:  10.1080/21655979.2021.2019876
[62] Liu W, Zheng YY, Chen B, et al. LncRNA papillary thyroid carcinoma susceptibility candidate 3 (PTCSC3) regulates the proliferation of human periodontal ligament stem cells and toll-like receptor 4 (TLR4) expression to improve periodontitis. BMC Oral Health, 2019; 19, 108. doi:  10.1186/s12903-019-0802-9
[63] Wangzhou K, Gong L, Liu C, et al. LncRNA MAFG-AS1 regulates human periodontal ligament stem cell proliferation and Toll-like receptor 4 expression. Oral Dis, 2020; 26, 1302−7. doi:  10.1111/odi.13330
[64] Ruan DP, Wu CY, Zhang Y, et al. LncRNA LOXL1-AS1 inhibits proliferation of PDLSCs and downregulates IL-1β in periodontitis patients. J Periodontal Res, 2022; 57, 324−31. doi:  10.1111/jre.12962
[65] Wu XY, Cao ZY, Chen H, et al. Downregulation of Linc-RNA activator of myogenesis lncRNA participates in FGF2-mediated proliferation of human periodontal ligament stem cells. J Periodontol, 2020; 91, 422−7. doi:  10.1002/JPER.19-0317
[66] Shi B, Shao BY, Yang C, et al. Upregulation of JHDM1D-AS1 protects PDLSCs from H2O2-induced apoptosis by decreasing DNAJC10 via phosphorylation of eIF2α. Biochimie, 2019; 165, 48−56. doi:  10.1016/j.biochi.2019.06.018
[67] Han Y, Wang F, Shao LQ, et al. LncRNA TUG1 mediates lipopolysaccharide-induced proliferative inhibition and apoptosis of human periodontal ligament cells by sponging miR-132. Acta Biochim Biophys Sin (Shanghai), 2019; 51, 1208−15. doi:  10.1093/abbs/gmz125
[68] Chen H, Lan ZD, Li QM, et al. Abnormal expression of long noncoding RNA FGD5-AS1 affects the development of periodontitis through regulating miR-142-3p/SOCS6/NF-κB pathway. Artif Cells Nanomed Biotechnol, 2019; 47, 2098−106. doi:  10.1080/21691401.2019.1620256
[69] Wang XY, Wang YH. LncRNA DCST1-AS1 inhibits PDLCs' proliferation in periodontitis and may bind with miR-21 precursor to upregulate PLAP-1. J Periodontal Res, 2021; 56, 256−64. doi:  10.1111/jre.12809
[70] Hua L, Zhang XH. MALAT1 regulates osteogenic differentiation of human periodontal ligament stem cells through mediating miR-155-5p/ETS1 axis. Tissue Cell, 2021; 73, 101619. doi:  10.1016/j.tice.2021.101619
[71] Wang ZH, Wang DZ, Guo S, et al. Long noncoding RNA distal-less homeobox 2 antisense 1 restrains inflammatory response and apoptosis of periodontal ligament cells by binding with microRNA-330-3p to regulate Ro60, Y RNA binding protein. Arch Oral Biol, 2022; 133, 105298. doi:  10.1016/j.archoralbio.2021.105298
[72] Wang L, Li YL, Hong FF, et al. Circ_0062491 alleviates LPS-induced apoptosis and inflammation in periodontitis by regulating miR-498/SOCS6 axis. Innate Immun, 2022; 28, 174−84. doi:  10.1177/17534259211072302
[73] Du WW, Wang L, Liao Z, et al. Circ_0085289 alleviates the progression of periodontitis by regulating let-7f-5p/SOCS6 pathway. Inflammation, 2021; 44, 1607−19. doi:  10.1007/s10753-021-01445-8
[74] Wang J, Du CC, Xu LL. Circ_0081572 inhibits the progression of periodontitis through regulating the miR-378h/RORA axis. Arch Oral Biol, 2021; 124, 105053. doi:  10.1016/j.archoralbio.2021.105053
[75] Li MY, Du MY, Wang YL, et al. CircRNA Lrp6 promotes cementoblast differentiation via miR-145a-5p/Zeb2 axis. J Periodontal Res, 2021; 56, 1200−12. doi:  10.1111/jre.12933
[76] Li W, Zhang Z, Li YZ, et al. Abnormal hsa_circ_0003948 expression affects chronic periodontitis development by regulating miR-144-3p/NR2F2/PTEN signaling. J Periodontal Res, 2022; 57, 316−23. doi:  10.1111/jre.12961
[77] Li Q, Hu ZP, Yang F, et al. Circ_0066881 targets miR-144-5p/RORA axis to alleviate LPS-induced apoptotic and inflammatory damages in human periodontal ligament cells. Innate Immun, 2022; 28, 164−73. doi:  10.1177/17534259221079812
[78] Yang N, Li Y, Wang G, et al. Tumor necrosis factor-α suppresses adipogenic and osteogenic differentiation of human periodontal ligament stem cell by inhibiting miR-21/Spry1 functional axis. Differentiation, 2017; 97, 33−43. doi:  10.1016/j.diff.2017.08.004
[79] Ma L, Wu D. MicroRNA-383-5p regulates osteogenic differentiation of human periodontal ligament stem cells by targeting histone deacetylase 9. Arch Oral Biol, 2021; 129, 105166. doi:  10.1016/j.archoralbio.2021.105166
[80] Liu ZN, Chen X, Zhang ZP, et al. Nanofibrous spongy microspheres to distinctly release mirna and growth factors to enrich regulatory T cells and rescue periodontal bone loss. ACS Nano, 2018; 12, 9785−99. doi:  10.1021/acsnano.7b08976
[81] Li LY, Liu WJ, Wang H, et al. Mutual inhibition between HDAC9 and miR-17 regulates osteogenesis of human periodontal ligament stem cells in inflammatory conditions. Cell Death Dis, 2018; 9, 480. doi:  10.1038/s41419-018-0480-6
[82] Yang Y, Ren DP, Zhao D, et al. MicroRNA-203 mediates Porphyromonas gingivalis LPS-induced inflammation and differentiation of periodontal ligament cells. Oral Dis, 2023; 29, 1715−25. doi:  10.1111/odi.14132
[83] Hong L, Sharp T, Khorsand B, et al. MicroRNA-200c represses IL-6, IL-8, and CCL-5 expression and enhances osteogenic differentiation. PLoS One, 2016; 11, e0160915. doi:  10.1371/journal.pone.0160915
[84] Akkouch A, Zhu M, Romero-Bustillos M, et al. MicroRNA-200c attenuates periodontitis by modulating proinflammatory and osteoclastogenic mediators. Stem Cells Dev, 2019; 28, 1026−36. doi:  10.1089/scd.2019.0027
[85] Krongbaramee T, Zhu M, Qian QW, et al. Plasmid encoding microRNA-200c ameliorates periodontitis and systemic inflammation in obese mice. Mol Ther Nucleic Acids, 2021; 23, 1204−16. doi:  10.1016/j.omtn.2021.01.030
[86] Wang L, He YY, Ning WC. Role of enhancer of zeste homolog 2 in osteoclast formation and periodontitis development by downregulating microRNA-101-regulated VCAM-1. J Tissue Eng Regen Med, 2021; 15, 534−45. doi:  10.1002/term.3187
[87] Lian JX, Wu XW, Liu Y, et al. Potential roles of miR-335-5p on pathogenesis of experimental periodontitis. J Periodontal Res, 2020; 55, 191−8. doi:  10.1111/jre.12701
[88] Ge Y, Li J, Hao Y, et al. MicroRNA-543 functions as an osteogenesis promoter in human periodontal ligament-derived stem cells by inhibiting transducer of ERBB2, 2. J Periodontal Res, 2018; 53, 832−41. doi:  10.1111/jre.12572
[89] Zhang KK, Geng YD, Wang SB, et al. MicroRNA-26a-5p targets Wnt5a to regulate osteogenic differentiation of human periodontal ligament stem cell from inflammatory microenvironment. Chin J Stomatol, 2019; 54, 662−9. (In Chinese
[90] Li J, Jin F, Cai M, et al. LncRNA nron inhibits bone resorption in periodontitis. J Dent Res, 2022; 101, 187−95. doi:  10.1177/00220345211019689
[91] Wang SW, Duan Y. LncRNA OIP5-AS1 inhibits the lipopolysaccharide-induced inflammatory response and promotes osteogenic differentiation of human periodontal ligament cells by sponging miR-92a-3p. Bioengineered, 2022; 13, 12055−66. doi:  10.1080/21655979.2022.2067291
[92] Yang QL, Han YN, Liu P, et al. Long noncoding RNA GAS5 promotes osteogenic differentiation of human periodontal ligament stem cells by regulating GDF5 and p38/JNK signaling pathway. Front Pharmacol, 2020; 11, 701. doi:  10.3389/fphar.2020.00701
[93] Liu XW, Zhou Y. Downregulation of lncRNA ANRIL inhibits osteogenic differentiation of periodontal ligament cells via sponging miR-7 through NF- κB pathway. Anal Cell Pathol, 2021; 2021, 7890674.
[94] Bian MX, Yu Y, Li YZ, et al. Upregulating the expression of LncRNA ANRIL promotes osteogenesis via the miR-7-5p/IGF-1R axis in the inflamed periodontal ligament stem cells. Front Cell Dev Biol, 2021; 9, 604400. doi:  10.3389/fcell.2021.604400
[95] Xu YR, Qin W, Guo DH, et al. LncRNA-TWIST1 promoted osteogenic differentiation both in PPDLSCs and in HPDLSCs by inhibiting TWIST1 expression. Biomed Res Int, 2019; 2019, 8735952.
[96] Wu D, Yin L, Sun DG, et al. Long noncoding RNA TUG1 promotes osteogenic differentiation of human periodontal ligament stem cell through sponging microRNA-222-3p to negatively regulate Smad2/7. Arch Oral Biol, 2020; 117, 104814. doi:  10.1016/j.archoralbio.2020.104814
[97] Feng YM, Wan PB, Yin LL. Long noncoding RNA X-Inactive Specific Transcript (XIST) promotes osteogenic differentiation of periodontal ligament stem cells by sponging MicroRNA-214-3p. Med Sci Monit, 2020; 26, e918932.
[98] Liu Y, Liu CP, Zhang AK, et al. Down-regulation of long non-coding RNA MEG3 suppresses osteogenic differentiation of periodontal ligament stem cells (PDLSCs) through miR-27a-3p/IGF1 axis in periodontitis. Aging (Albany NY), 2019; 11, 5334−50.
[99] Guo JB, Zheng MQ. The regulation mechanism of LINC00707 on the osteogenic differentiation of human periodontal ligament stem cells. J Mol Histol, 2022; 53, 13−26. doi:  10.1007/s10735-021-10029-7
[100] Yu BH, Hu JH, Li Q, et al. CircMAP3K11 contributes to proliferation, apoptosis and migration of human periodontal ligament stem cells in inflammatory microenvironment by regulating TLR4 via miR-511 sponging. Front Pharmacol, 2021; 12, 633353. doi:  10.3389/fphar.2021.633353
[101] Li XB, Zheng YF, Zheng Y, et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway. Stem Cell Res Ther, 2018; 9, 232. doi:  10.1186/s13287-018-0976-0
[102] Ye Y, Ke Y, Liu L, et al. CircRNA FAT1 regulates osteoblastic differentiation of periodontal ligament stem cells via miR-4781-3p/SMAD5 pathway. Stem Cells Int, 2021; 2021, 5177488.
[103] Wang CL, Gong JX, Li D, et al. circ_0062491 alleviates periodontitis via the miR-142-5p/IGF1 axis. Open Med (Wars), 2022; 17, 638−47. doi:  10.1515/med-2022-0442
[104] Luan XH, Zhou XF, Fallah P, et al. MicroRNAs: harbingers and shapers of periodontal inflammation. Semin Cell Dev Biol, 2022; 124, 85−98. doi:  10.1016/j.semcdb.2021.05.030
[105] Xie YF, Shu R, Jiang SY, et al. Comparison of microRNA profiles of human periodontal diseased and healthy gingival tissues. Int J Oral Sci, 2011; 3, 125−34. doi:  10.4248/IJOS11046
[106] Luan XH, Zhou XF, Naqvi A, et al. MicroRNAs and immunity in periodontal health and disease. Int J Oral Sci, 2018; 10, 24. doi:  10.1038/s41368-018-0025-y
[107] Kebschull M, Papapanou PN. Mini but mighty: microRNAs in the pathobiology of periodontal disease. Periodontol 2000, 2015; 69, 201−20. doi:  10.1111/prd.12095
[108] Mert S, Malyaran H, Craveiro RB, et al. Comparative analysis of proliferative and multilineage differentiation potential of human periodontal ligament stem cells from maxillary and mandibular molars. J Periodontol, 2023; 94, 882−95. doi:  10.1002/JPER.22-0706
[109] Xu JC, Yin YY, Lin Y, et al. Long non-coding RNAs: emerging roles in periodontitis. J Periodontal Res, 2021; 56, 848−62. doi:  10.1111/jre.12910
[110] Sayad A, Mirzajani S, Gholami L, et al. Emerging role of long non-coding RNAs in the pathogenesis of periodontitis. Biomed Pharmacother, 2020; 129, 110362. doi:  10.1016/j.biopha.2020.110362
[111] Zou YG, Li C, Shu FP, et al. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis. J Cell Biochem, 2015; 116, 640−7. doi:  10.1002/jcb.25015
[112] Sánchez-Muñoz F, Martínez-Coronilla G, Leija-Montoya AG, et al. Periodontitis may modulate long-non coding RNA expression. Arch Oral Biol, 2018; 95, 95−9. doi:  10.1016/j.archoralbio.2018.07.023
[113] Li S, Liu X, Li H, et al. Integrated analysis of long noncoding RNA-associated competing endogenous RNA network in periodontitis. J Periodontal Res, 2018; 53, 495−505. doi:  10.1111/jre.12539
[114] Zheng W, Wang S, Wang JG, et al. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int J Mol Med, 2015; 36, 915−22. doi:  10.3892/ijmm.2015.2314
[115] Wang YH, Sun YY, Zheng P, et al. Long non-coding RNAs mortal obligate RNA transcript regulates the proliferation of human periodontal ligament stem cells and affects the recurrence of periodontitis. Arch Oral Biol, 2019; 105, 1−4. doi:  10.1016/j.archoralbio.2019.04.013
[116] Khotib J, Marhaeny HD, Miatmoko A, et al. Differentiation of osteoblasts: the links between essential transcription factors. J Biomol Struct Dyn, 2022, 1−20.
[117] He Q, Yang SY, Gu XG, et al. Long noncoding RNA TUG1 facilitates osteogenic differentiation of periodontal ligament stem cells via interacting with Lin28A. Cell Death Dis, 2018; 9, 455. doi:  10.1038/s41419-018-0484-2
[118] Wang L, Wu F, Song Y, et al. Long noncoding RNA related to periodontitis interacts with miR-182 to upregulate osteogenic differentiation in periodontal mesenchymal stem cells of periodontitis patients. Cell Death Dis, 2016; 7, e2327. doi:  10.1038/cddis.2016.125
[119] Yu WJ, Gu QS, Wu D, et al. Identification of potentially functional circRNAs and prediction of circRNA-miRNA-mRNA regulatory network in periodontitis: bridging the gap between bioinformatics and clinical needs. J Periodontal Res, 2022; 57, 594−614. doi:  10.1111/jre.12989
[120] Ye Y, Fu L, Liu L, et al. Integrative analysis of ceRNA networks in human periodontal ligament stem cells under hypoxia. Oral Dis, 2023; 29, 1197−213. doi:  10.1111/odi.14096
[121] Jiao KX, Walsh LJ, Ivanovski S, et al. The emerging regulatory role of circular RNAs in periodontal tissues and cells. Int J Mol Sci, 2021; 22, 4636. doi:  10.3390/ijms22094636
[122] Li J, Xie RY. Circular RNA expression profile in gingival tissues identifies circ_0062491 and circ_0095812 as potential treatment targets. J Cell Biochem, 2019; 120, 14867−74. doi:  10.1002/jcb.28748
[123] Xie LK, Chen JZ, Ren XB, et al. Alteration of circRNA and lncRNA expression profile in exosomes derived from periodontal ligament stem cells undergoing osteogenic differentiation. Arch Oral Biol, 2021; 121, 104984. doi:  10.1016/j.archoralbio.2020.104984
[124] Zheng YF, Li XB, Huang YP, et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis. J Periodontol, 2017; 88, 906−14. doi:  10.1902/jop.2017.170078
[125] Gu XG, Li XY, Jin Y, et al. CDR1as regulated by hnRNPM maintains stemness of periodontal ligament stem cells via miR-7/KLF4. J Cell Mol Med, 2021; 25, 4501−15. doi:  10.1111/jcmm.16541
[126] Wang YZ, Zhang XG, Wang JJ, et al. Inflammatory periodontal ligament stem cells drive M1 macrophage polarization via exosomal miR-143-3p-mediated regulation of PI3K/AKT/NF-κB signaling. Stem Cells, 2023; 41, 184−99. doi:  10.1093/stmcls/sxac087
[127] Wangzhou K, Lai ZY, Lu ZS, et al. MiR-143-3p inhibits osteogenic differentiation of human periodontal ligament cells by targeting KLF5 and inactivating the Wnt/β-catenin pathway. Front Physiol, 2021; 11, 606967. doi:  10.3389/fphys.2020.606967
[128] Zhou M, Hu H, Han YN, et al. Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif, 2021; 54, e12957. doi:  10.1111/cpr.12957
[129] Zhu YT, Ai RS, Ding ZQ, et al. LncRNA-01126 inhibits the migration of human periodontal ligament cells through MEK/ERK signaling pathway. J Periodontal Res, 2020; 55, 631−41. doi:  10.1111/jre.12749
[130] Li JS, Wang MW, Song LT, et al. LncRNA MALAT1 regulates inflammatory cytokine production in lipopolysaccharide-stimulated human gingival fibroblasts through sponging miR-20a and activating TLR4 pathway. J Periodontal Res, 2020; 55, 182−90. doi:  10.1111/jre.12700
[131] Chen QC, Cao M, Ge HY. Knockdown of MALAT1 inhibits the progression of chronic periodontitis via targeting miR-769-5p/HIF3A axis. Biomed Res Int, 2021; 2021, 8899863.
[132] Wang XF, Ma F, Jia PZ. LncRNA AWPPH overexpression predicts the recurrence of periodontitis. Biosci Rep, 2019; 39, BSR20190636. doi:  10.1042/BSR20190636
[133] Zhang L, Lv H, Cui YX, et al. The role of long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) in chronic periodontitis progression. Bioengineered, 2022; 13, 2336−45. doi:  10.1080/21655979.2021.2018387
[134] Wang HW, Qiao XT, Zhang C, et al. Long non-coding RNA LINC00616 promotes ferroptosis of periodontal ligament stem cells via the microRNA-370 / transferrin receptor axis. Bioengineered, 2022; 13, 13070−81. doi:  10.1080/21655979.2022.2076508
[135] Pan JX, Zhao L, Liu J, et al. Inhibition of circular RNA circ_0138959 alleviates pyroptosis of human gingival fibroblasts via the microRNA-527/caspase-5 axis. Bioengineered, 2022; 13, 1908−20. doi:  10.1080/21655979.2021.2020396
[136] Sun DD, Wu X, Lin SC, et al. Anti-apoptosis and anti-inflammation activity of circ_0097010 downregulation in lipopolysaccharide-stimulated periodontal ligament cells by miR-769-5p/Krüppel like factor 6 axis. J Dent Sci, 2023; 18, 310−21. doi:  10.1016/j.jds.2022.04.024
[137] Li SS, Xu HL, Li YY, et al. Circ_0138960 contributes to lipopolysaccharide-induced periodontal ligament cell dysfunction. Immun Inflamm Dis, 2022; 10, e732. doi:  10.1002/iid3.732
[138] Wang J, Wang ZN, Huang M, et al. Circ_0099630 participates in SPRY1-mediated repression in periodontitis. Int Dent J, 2023; 73, 136−43. doi:  10.1016/j.identj.2022.06.025
[139] Zhao XQ, Ao CB, Yan YT. The circular RNA circ_0099630/miR-940/receptor-associated factor 6 regulation cascade modulates the pathogenesis of periodontitis. J Dent Sci, 2022; 17, 1566−76. doi:  10.1016/j.jds.2022.04.005
[140] Wei YR, Peng ZJ. Hsa_circ_0099630 knockdown induces the proliferation and osteogenic differentiation and attenuates the apoptosis of porphyromonas gingivalis lipopolysaccharide-induced human periodontal ligament fibroblasts. Ann Transl Med, 2022; 10, 993. doi:  10.21037/atm-22-4209
[141] Yu M, Chi CY. lncRNA FGD5-AS1 and miR-130a can be used for prognosis analysis of patients with chronic periodontitis. Biomed Res Int, 2021; 2021, 8544914.
[142] Wang YZ, Li Y, Shao P, et al. IL1β inhibits differentiation of cementoblasts via microRNA-325-3p. J Cell Biochem, 2020; 121, 2606−17. doi:  10.1002/jcb.29482
[143] Byun JS, Lee HY, Tian JW, et al. Effect of salivary exosomal miR-25-3p on periodontitis with insulin resistance. Front Immunol, 2022; 12, 775046. doi:  10.3389/fimmu.2021.775046
[144] Zhou XD, Luan X, Chen Z, et al. MicroRNA-138 inhibits periodontal progenitor differentiation under inflammatory conditions. J Dent Res, 2016; 95, 230−7. doi:  10.1177/0022034515613043
[145] Liu X, Yang B, Zhang Y, et al. miR-30a-5p inhibits osteogenesis and promotes periodontitis by targeting Runx2. BMC Oral Health, 2021; 21, 513. doi:  10.1186/s12903-021-01882-9
[146] Zhang YC, Li SY, Yuan SJ, et al. MicroRNA-23a inhibits osteogenesis of periodontal mesenchymal stem cells by targeting bone morphogenetic protein signaling. Arch Oral Biol, 2019; 102, 93−100. doi:  10.1016/j.archoralbio.2019.04.001
[147] Yao SQ, Zhao W, Ou QM, et al. MicroRNA-214 suppresses osteogenic differentiation of human periodontal ligament stem cells by targeting ATF4. Stem Cells Int, 2017; 2017, 3028647.
[148] Chen WY. SNHG7 promotes the osteo/dentinogenic differentiation ability of human dental pulp stem cells by interacting with hsa-miR-6512-3p in an inflammatory microenvironment. Biochem Biophys Res Commun, 2021; 581, 46−52. doi:  10.1016/j.bbrc.2021.09.081
[149] Zhang Z, Wang MH, Zheng YL, et al. MicroRNA-223 negatively regulates the osteogenic differentiation of periodontal ligament derived cells by directly targeting growth factor receptors. J Transl Med, 2022; 20, 465. doi:  10.1186/s12967-022-03676-1
[150] Duan Y, An W, Wu YX, et al. Tetramethylpyrazine reduces inflammation levels and the apoptosis of LPS-stimulated human periodontal ligament cells via the downregulation of miR-302b. Int J Mol Med, 2020; 45, 1918−26.
[151] Jia Q, Jiang WK, Ni LX. Down-regulated non-coding RNA (lncRNA-ANCR) promotes osteogenic differentiation of periodontal ligament stem cells. Arch Oral Biol, 2015; 60, 234−41. doi:  10.1016/j.archoralbio.2014.10.007
[152] Peng W, Deng W, Zhang J, et al. Long noncoding RNA ANCR suppresses bone formation of periodontal ligament stem cells via sponging miRNA-758. Biochem Biophys Res Commun, 2018; 503, 815−21. doi:  10.1016/j.bbrc.2018.06.081
[153] Wang Z, Huang YL, Tan LJ. Downregulation of lncRNA DANCR promotes osteogenic differentiation of periodontal ligament stem cells. BMC Dev Biol, 2020; 20, 2. doi:  10.1186/s12861-019-0206-8
[154] Deng WJ, Wang XL, Zhang J, et al. Circ_0138959/miR-495-3p/TRAF6 axis regulates proliferation, wound healing and osteoblastic differentiation of periodontal ligament cells in periodontitis. J Dent Sci, 2022; 17, 1125−34. doi:  10.1016/j.jds.2022.01.010
[155] Zheng JJ, Zhu XM, He YN, et al. CircCDK8 regulates osteogenic differentiation and apoptosis of PDLSCs by inducing ER stress/autophagy during hypoxia. Ann N Y Acad Sci, 2021; 1485, 56−70. doi:  10.1111/nyas.14483
[156] Nisha KJ, Janam P, Harshakumar K. Identification of a novel salivary biomarker miR-143-3p for periodontal diagnosis: a proof of concept study. J Periodontol, 2019; 90, 1149−59. doi:  10.1002/JPER.18-0729
[157] Iaquinta MR, Lanzillotti C, Mazziotta C, et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics, 2021; 11, 6573−91. doi:  10.7150/thno.55664
[158] Wang X, Sun H, Liao H, et al. MicroRNA-155-3p mediates TNF-α-inhibited cementoblast differentiation. J Dent Res, 2017; 96, 1430−7. doi:  10.1177/0022034517718790
[159] Cao FD, Zhan JL, Chen XF, et al. miR-214 promotes periodontal ligament stem cell osteoblastic differentiation by modulating Wnt/β-catenin signaling. Mol Med Rep, 2017; 16, 9301−8. doi:  10.3892/mmr.2017.7821
[160] Tenkumo T, Rojas-Sánchez L, Vanegas Sáenz JR, et al. Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste. Acta Biomater, 2020; 105, 263−79. doi:  10.1016/j.actbio.2020.01.031
[161] Zhu DW, Xue D, Lai W, et al. microRNA-146a reverses the inhibitory effects of Porphyromonas gingivalis lipopolysaccharide on osteogenesis of human periodontal ligament cells. Chin J Stomatol, 2018; 53, 753−9. (In Chinese
[162] Meng XM, Wang WJ, Wang XL. MicroRNA-34a and microRNA-146a target CELF3 and suppress the osteogenic differentiation of periodontal ligament stem cells under cyclic mechanical stretch. J Dent Sci, 2022; 17, 1281−91. doi:  10.1016/j.jds.2021.11.011
[163] Riahi Rad Z, Riahi Rad Z, Goudarzi H, et al. MicroRNAs in the interaction between host-bacterial pathogens: a new perspective. J Cell Physiol, 2021; 236, 6249−70. doi:  10.1002/jcp.30333
[164] Rovas A, Puriene A, Snipaitiene K, et al. Analysis of periodontitis-associated miRNAs in gingival tissue, gingival crevicular fluid, saliva and blood plasma. Arch Oral Biol, 2021; 126, 105125. doi:  10.1016/j.archoralbio.2021.105125
[165] Sipert CR, Morandini AC, Dionísio TJ, et al. MicroRNA-146a and microRNA-155 show tissue-dependent expression in dental pulp, gingival and periodontal ligament fibroblasts in vitro. J Oral Sci, 2014; 56, 157−64. doi:  10.2334/josnusd.56.157