[1] Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond), 2016; 40, 88-101. doi:  10.1038/ijo.2015.170
[2] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116, 281-97. doi:  10.1016/S0092-8674(04)00045-5
[3] Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol, 2012; 13, 239-50. doi:  10.1038/nrm3313
[4] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993; 75, 843-54. doi:  10.1016/0092-8674(93)90529-Y
[5] Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet, 2015; 16, 421-33. doi:  10.1038/nrg3965
[6] Czech B, Zhou R, Erlich Y, et al. Hierarchical rules for Argonaute loading in Drosophila. Mol Cell, 2009; 36, 445-56. doi:  10.1016/j.molcel.2009.09.028
[7] Okamura K, Liu N, Lai EC. Distinct mechanisms for microRNA strand selection by Drosophila Argonautes. Mol Cell, 2009; 36, 431-44. doi:  10.1016/j.molcel.2009.09.027
[8] Flores O, Kennedy EM, Skalsky RL, et al. Differential RISC association of endogenous human microRNAs predicts their inhibitory potential. Nucleic Acids Res, 2014; 42, 4629-39. doi:  10.1093/nar/gkt1393
[9] Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009; 136, 215-33. doi:  10.1016/j.cell.2009.01.002
[10] Friedman RC, Farh KK, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res, 2009; 19, 92-105. http://genome.cshlp.org/content/early/2008/01/01/gr.082701.108?cited-by=yes&legid=genome;gr.082701.108v1
[11] Xu Q, Gao ZY, Li LM, et al. The Association of Maternal Body Composition and Dietary Intake with the Risk of Gestational Diabetes Mellitus during the Second Trimester in a Cohort of Chinese Pregnant Women. Biomed Environ Sci, 2016; 29, 1-11. https://www.sciencedirect.com/science/article/pii/S0895398816300113
[12] He H, Zhen Q, Li Y, et al. Prevalence of High Non-high-density Lipoprotein Cholesterol and Associated Risk Factors in Patients with Diabetes Mellitus in Jilin Province, China: A Cross-sectional Study. Biomed Environ Sci, 2016; 29, 534-8. http://d.wanfangdata.com.cn/Periodical_bes201607010.aspx
[13] Liang Z, Qiu QY, Wu JH, et al. Alcohol Drinking, Dyslipidemia, and Diabetes: A Population-based Prospective Cohort Study among Inner Mongolians in China. Biomed Environ Sci, 2016; 29, 555-62. http://www.cqvip.com/QK/84046X/201608/669972183.html
[14] Zhang L, Zhang M, Wang JJ, et al. Association of TCF7L2 and GCG Gene Variants with Insulin Secretion, Insulin Resistance, and Obesity in New-onset Diabetes. Biomed Environ Sci, 2016; 29, 814-7. https://www.sciencedirect.com/science/article/pii/S0895398816301283
[15] Xu T, Chen GC, Zhai L, et al Nonlinear Reduction in Risk for Type 2 Diabetes by Magnesium Intake: An Updated Meta-Analysis of Prospective Cohort Studies. Biomed Environ Sci, 2015; 28, 527-34. http://www.sciencedirect.com/science/article/pii/S0895398815300830
[16] Yang AM, Cheng N, Pu HQ, et al. Metal Exposure and Risk of Diabetes and prediabetes among Chinese Occupational Workers. Biomed Environ Sci, 2015; 28, 875-83. http://d.wanfangdata.com.cn/Periodical_bes201512003.aspx
[17] Gong W, Xiao D, Ming G, et al. Type 2 diabetes mellitus-related genetic polymorphisms in microRNAs and microRNA target sites. J Diabetes, 2014; 6, 279-89. doi:  10.1111/jdb.2014.6.issue-4
[18] Ciccacci C, Di Fusco D, Cacciotti L, et al. MicroRNA genetic variations: association with type 2 diabetes. Acta Diabetol, 2013; 50, 867-72. doi:  10.1007/s00592-013-0469-7
[19] Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A, 2007; 104, 3300-5. doi:  10.1073/pnas.0611347104
[20] Ciccacci C, Morganti R, Di Fusco D, et al. Common polymorphisms in MIR146a, MIR128a and MIR27a genes contribute to neuropathy susceptibility in type 2 diabetes. Acta Diabetol, 2014; 51, 663-71. doi:  10.1007/s00592-014-0582-2
[21] Kaidonis G, Gillies MC, Abhary S, et al. A single-nucleotide polymorphism in the MicroRNA-146a gene is associated with diabetic nephropathy and sight-threatening diabetic retinopathy in Caucasian patients. Acta Diabetol, 2016; 53, 643-50. doi:  10.1007/s00592-016-0850-4
[22] Li Y, Zhang Y, Li X, et al. Association study of polymorphisms in miRNAs with T2DM in Chinese population. Int J Med Sci, 2015; 12, 875-80. doi:  10.7150/ijms.12954
[23] Shen J, Zhang M, Sun M, et al. The relationship of miR-146a gene polymorphism with carotid atherosclerosis in Chinese patients with type 2 diabetes mellitus. Thromb Res, 2015; 136, 1149-55. doi:  10.1016/j.thromres.2015.10.013
[24] Li C, Lei T. Rs12976445 Polymorphism is Associated with Risk of Diabetic Nephropathy Through Modulating Expression of MicroRNA-125 and Interleukin-6R. Med Sci Monit, 2015; 21, 3490-7. doi:  10.12659/MSM.894987
[25] Alipoor B, Meshkani R, Ghaedi H, et al. Association of miR-146a rs2910164 and miR-149 rs2292832 Variants with Susceptibility to Type 2 Diabetes. Clin Lab, 2016; 62, 1553-61. https://www.researchgate.net/profile/Hamid_Ghaedi/publication/309119042_Association_of_miR-146a_rs2910164_and_miR-149_rs2292832_variants_with_susceptibility_to_type_2_diabetes/links/5802549208ae310e0d9de7e0.pdf?origin=publication_list
[26] Ghaedi H, Tabasinezhad M, Alipoor B, et al. The pre-mir-27a variant rs895819 may contribute to type 2 diabetes mellitus susceptibility in an Iranian cohort. J Endocrinol Invest, 2016; 39, 1187-93. doi:  10.1007/s40618-016-0499-4
[27] Buraczynska M, Zukowski P, Wacinski P, et al. Polymorphism in microRNA-196a2 contributes to the risk of cardiovascular disease in type 2 diabetes patients. J Diabetes Complications, 2014; 28, 617-20. doi:  10.1016/j.jdiacomp.2014.05.006
[28] Ghanbari M, Sedaghat S, de Looper HW, et al. The association of common polymorphisms in miR-196a2 with waist to hip ratio and miR-1908 with serum lipid and glucose. Obesity (Silver Spring), 2015; 23, 495-503. doi:  10.1002/oby.v23.2
[29] Mishra PJ, Bertino JR. MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics, 2009; 10, 399-416. doi:  10.2217/14622416.10.3.399
[30] Gong J, Liu C, Liu W, et al. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools. Database (Oxford), 2015; 2015, bav029. doi:  10.1093/database/bav029
[31] Cheng M, Liu X, Yang M, et al. Computational analyses of type 2 diabetes-associated loci identified by genome-wide association studies. J Diabetes, 2017; 9, 362-77. doi:  10.1111/jdb.2017.9.issue-4
[32] Franks PW, Rolandsson O, Debenham SL, et al. Replication of the association between variants in WFS1 and risk of type 2 diabetes in European populations. Diabetologia, 2008; 51, 458-63. doi:  10.1007/s00125-007-0887-6
[33] Elek Z, Nemeth N, Nagy G, et al. Micro-RNA Binding Site Polymorphisms in the WFS1 Gene Are Risk Factors of Diabetes Mellitus. PloS One, 2015; 10, e0139519. doi:  10.1371/journal.pone.0139519
[34] Goda N, Murase H, Kasezawa N, et al. Polymorphism in microRNA-binding site in HNF1B influences the susceptibility of type 2 diabetes mellitus: a population based case-control study. BMC Med Genet, 2015; 16, 75. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4557749/
[35] Wang X, Li W, Ma L, et al. Association study of the miRNA-binding site polymorphisms of CDKN2A/B genes with gestational diabetes mellitus susceptibility. Acta Diabetol, 2015; 52, 951-8. doi:  10.1007/s00592-015-0768-2
[36] Wang X, Li W, Ma L, et al. Investigation of miRNA-binding site variants and risk of gestational diabetes mellitus in Chinese pregnant women. Acta Diabetol, 2017; 54, 309-16. doi:  10.1007/s00592-017-0969-y
[37] Ghaedi H, Bastami M, Jahani MM, et al. A Bioinformatics Approach to the Identification of Variants Associated with Type 1 and Type 2 Diabetes Mellitus that Reside in Functionally Validated miRNAs Binding Sites. Biochem Genet, 2016; 54, 211-21. doi:  10.1007/s10528-016-9713-5
[38] Sesti G, Federici M, Hribal ML, et al. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J, 2001; 15, 2099-111. doi:  10.1096/fj.01-0009rev
[39] Xue B, Tan JB, Ning F, et al. Association Between Serum Uric Acid and Prevalence of Type 2 Diabetes Diagnosed using HbA1c Criteria among Chinese Adults in Qingdao, China. Biomed Environ Sci, 2015; 28, 884-93. https://www.ncbi.nlm.nih.gov/pubmed/?term=Association+Between+Serum+Uric+Acid+and+Prevalence+of+Type+2+Diabetes+Diagnosed+using+HbA1c+Criteria+Among+Chinese+Adults+in+Qingdao%2C+China
[40] Hashimoto N, Tanaka T. Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus. J Hum Genet, 2017; 62, 141-50. doi:  10.1038/jhg.2016.150
[41] Iljas JD, Guanzon D, Elfeky O, et al. Review: Bio-compartmentalization of microRNAs in exosomes during gestational diabetes mellitus. Placenta, 2017; 54, 76-82. doi:  10.1016/j.placenta.2016.12.002
[42] Ghai V, Wang K. Recent progress toward the use of circulating microRNAs as clinical biomarkers. Arch Toxicol, 2016; 90, 2959-78. doi:  10.1007/s00204-016-1828-2
[43] Parrizas M, Novials A. Circulating microRNAs as biomarkers for metabolic disease. Best Pract Res Clin Endocrinol Metab, 2016; 30, 591-601. doi:  10.1016/j.beem.2016.08.001
[44] Sebastiani G, Nigi L, Grieco GE, et al. Circulating microRNAs and diabetes mellitus: a novel tool for disease prediction, diagnosis, and staging? J Endocrinol Invest, 2017; 40, 591-610. doi:  10.1007/s40618-017-0611-4
[45] Zhang T, Lv C, Li L, et al. Plasma miR-126 is a potential biomarker for early prediction of type 2 diabetes mellitus in susceptible individuals. Biomed Res Int, 2013; 2013, 761617. http://repository.ust.hk/ir/Record/1783.1-62238
[46] Liu Y, Gao G, Yang C, et al. The role of circulating microRNA-126 (miR-126): a novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int J Mol Sci, 2014; 15, 10567-77. doi:  10.3390/ijms150610567
[47] Zhang T, Li L, Shang Q, et al. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun, 2015; 463, 60-3. doi:  10.1016/j.bbrc.2015.05.017
[48] Al-Kafaji G, Al-Mahroos G, Alsayed NA, et al. Peripheral blood microRNA-15a is a potential biomarker for type 2 diabetes mellitus and pre-diabetes. Mol Med Rep, 2015; 12, 7485-90. doi:  10.3892/mmr.2015.4416
[49] Yan ST, Li CL, Tian H, et al. MiR-199a is overexpressed in plasma of type 2 diabetes patients which contributes to type 2 diabetes by targeting GLUT4. Mol Cell Biochem, 2014; 397, 45-51. doi:  10.1007/s11010-014-2170-8
[50] Lv C, Zhou YH, Wu C, et al. The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy. Diabetes Metab Res Rev, 2015; 31, 717-24. doi:  10.1002/dmrr.v31.7
[51] Bacon S, Engelbrecht B, Schmid J, et al. MicroRNA-224 is Readily Detectable in Urine of Individuals with Diabetes Mellitus and is a Potential Indicator of Beta-Cell Demise. Genes, 2015; 6, 399-416. doi:  10.3390/genes6020399
[52] Tao W, Dong X, Kong G, et al. Elevated Circulating hsa-miR-106b, hsa-miR-26a, and hsa-miR-29b in Type 2 Diabetes Mellitus with Diarrhea-Predominant Irritable Bowel Syndrome. Gastroenterol Res Pract, 2016; 2016, 9256209. https://www.ncbi.nlm.nih.gov/pubmed/?term=hsa-miR-26a
[53] Kimura Y, Tamasawa N, Matsumura K, et al. Clinical Significance of Determining Plasma MicroRNA33b in Type 2 Diabetic Patients with Dyslipidemia. J Atheroscler Thromb, 2016; 23, 1276-85. doi:  10.5551/jat.33670
[54] Zou HL, Wang Y, Gang Q, et al. Plasma level of miR-93 is associated with higher risk to develop type 2 diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol, 2017; 255, 1159-66. doi:  10.1007/s00417-017-3638-5
[55] Wang SS, Li YQ, Liang YZ, et al. Expression of miR-18a and miR-34c in circulating monocytes associated with vulnerability to type 2 diabetes mellitus and insulin resistance. J Cell Mol Med, 2017. doi: 10.1111/jcmm.13240 [Epub ahead of print]