[1] Soták M, Sumová A, Pácha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med, 2014; 46, 221-32. doi:  10.3109/07853890.2014.892296
[2] Schibler U, Gotic I, Saini C, et al. Clock-Talk:Interactions between Central and Peripheral Circadian Oscillators in Mammals. Cold Spring Harb Symp Quant Biol, 2015; 80, 223-32. doi:  10.1101/sqb.2015.80.027490
[3] Sahar S, Sassonecorsi P. Metabolism and cancer:the circadian clock connection. Nat Rev Cancer, 2009; 9, 886-96. doi:  10.1038/nrc2747
[4] Pryce CR, Fuchs E. Chronic psychosocial stressors in adulthood:Studies in mice, rats and tree shrews. Neurobiol Stress, 2016; 6, 94-103. http://www.ncbi.nlm.nih.gov/pubmed/28229112
[5] Dumbell R, Matveeva O, Oster H. Circadian Clocks, Stress, and Immunity. Front Endocrinol (Lausanne), 2016; 7, 37. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234631006/
[6] Aguilera G. HPA axis responsiveness to stress:Implications for healthy aging. Exp Gerontol, 2011; 46, 90-5. doi:  10.1016/j.exger.2010.08.023
[7] Herman JP, Mcklveen JM, Ghosal S, et al. Regulation of the Hypothalamic-Pituitary-Adrenocortical Stress Response. Compr Physiol, 2016; 6, 603-21. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_230672
[8] Mcewen BS. Central effects of stress hormones in health and disease:Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol, 2008; 583, 174. doi:  10.1016/j.ejphar.2007.11.071
[9] Kiessling S, Sollars PJ, Pickard GE. Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus. PLoS One, 2014; 9, e92959. doi:  10.1371/journal.pone.0092959
[10] Pezük P, Mohawk JA, Wang LA, et al. Glucocorticoids as entraining signals for peripheral circadian oscillators. Endocrinology, 2012; 153, 4775-83. doi:  10.1210/en.2012-1486
[11] Fisk AS, Tam SKE, Brown LA, et al. Light and Cognition:Roles for Circadian Rhythms, Sleep, and Arousal. Front Neurol, 2018; 9, 56. doi:  10.3389/fneur.2018.00056
[12] Abbott SM, Reid KJ, Zee PC. Circadian Rhythm Sleep-Wake Disorders. Psychiatr Clin North Am, 2015; 38, 805-23. doi:  10.1016/j.psc.2015.07.012
[13] Hughey JJ, Butte AJ. Differential Phasing between Circadian Clocks in the Brain and Peripheral Organs in Humans. J Biol Rhythms, 2016; 31, 588-97. doi:  10.1177/0748730416668049
[14] Claustrat B, Leston J. Melatonin:Physiological effects in humans. Neurochirurgie, 2015; 61, 77-84. doi:  10.1016/j.neuchi.2015.03.002
[15] Dibner C, Schibler U, Albrecht U. The Mammalian Circadian Timing System:Organization and Coordination of Central and Peripheral Clocks. Annu Rev Physiol, 2010; 72, 517-49. doi:  10.1146/annurev-physiol-021909-135821
[16] Menaker M, Murphy ZC, Sellix MT. Central control of peripheral circadian oscillators. Curr Opin Neurobiol, 2013; 23, 741-6. doi:  10.1016/j.conb.2013.03.003
[17] Helfrichförster C. Interactions between psychosocial stress and the circadian endogenous clock. Psych J, 2017; 6, 277-89. doi:  10.1002/pchj.2017.6.issue-4
[18] Richards J, Gumz ML. Advances in understanding the peripheral circadian clocks. FASEB J, 2012; 26, 3602-13. doi:  10.1096/fj.12-203554
[19] Mcclung CA. Circadian rhythms and mood regulation:insights from pre-clinical models. Eur Neuropsychopharmacol, 2011; 21, S683-93. doi:  10.1016/j.euroneuro.2011.07.008
[20] Takahashi JS. Molecular Architecture of the Circadian Clock in Mammals. Trends Cell Biol, 2016; 24, 90-9
[21] Buhr ED, Takahashi JS. Molecular components of the Mammalian circadian clock. Handb Exp Pharmacol, 2013; 217, 3-27. doi:  10.1007/978-3-642-25950-0
[22] Dierickx P, Laake LWV, Geijsen N. Circadian clocks:from stem cells to tissue homeostasis and regeneration. Embo Reports, 2017; 19, 18-28. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5757216/
[23] Trott AJ, Menet JS. Regulation of circadian clock transcriptional output by CLOCK:BMAL1. PLoS Genet, 2018; 14, e1007156. doi:  10.1371/journal.pgen.1007156
[24] Singh D, Rani S, Kumar V. Daily expression of six clock genes in central and peripheral tissues of a night-migratory songbird:evidence for tissue-specific circadian timing. Chronobiol Int, 2013; 30, 1208-17. doi:  10.3109/07420528.2013.810632
[25] Meyer V, Lerchl A. Evidence for species-specific clock gene expression patterns in hamster peripheral tissue. Gene, 2014; 548, 101-11. doi:  10.1016/j.gene.2014.07.019
[26] Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci, 2012; 35, 445-62. doi:  10.1146/annurev-neuro-060909-153128
[27] Shostak A. Circadian Clock, Cell Division, and Cancer:From Molecules to Organism. Int J Mol Sci, 2017; 18, 873. doi:  10.3390/ijms18040873
[28] Blakeman V, Williams JL, Meng QJ, et al. Circadian clocks and breast cancer. Breast Cancer Res, 2016; 18, 89. doi:  10.1186/s13058-016-0743-z
[29] Azuma K, Zhou Q, Niwa M, et al. Association between Mastication, the Hippocampus, and the HPA Axis:A Comprehensive Review. Int J Mol Sci, 2017; 18. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5578077/
[30] Gądek-Michalska A, Spyrka J, Rachwalska P, et al. Influence of chronic stress on brain corticosteroid receptors and HPA axis activity. Pharmacol Rep, 2013; 65, 1163-75. doi:  10.1016/S1734-1140(13)71474-9
[31] Sladek CD, Michelini LC, Stachenfeld NS, et al. Endocrine-Autonomic Linkages. Compr Physiol, 2015; 5, 1281-323. http://cn.bing.com/academic/profile?id=40a0309195933909ad6cdb4580f9c0b5&encoded=0&v=paper_preview&mkt=zh-cn
[32] Spiga F, Walker JJ, Terry JR, et al. HPA axis-rhythms. Compr Physiol, 2014; 4, 1273-98. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225900439/
[33] Gupta D, Morley JE. Hypothalamic-pituitary-adrenal (HPA) axis and aging. Compr Physiol. 2014; 4, 1495-510. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0231849289/
[34] Adcock IM, Mumby S. Glucocorticoids. Handb Exp Pharmacol, 2017; 237, 171-96. http://d.old.wanfangdata.com.cn/Periodical/syeklczz201718014
[35] Sacta MA, Chinenov Y, Rogatsky I. Glucocorticoid Signaling:An Update from a Genomic Perspective. Annu Rev Physiol, 2016; 78, 155-80. doi:  10.1146/annurev-physiol-021115-105323
[36] Garabedian MJ, Harris CA, Jeanneteau F. Glucocorticoid receptor action in metabolic and neuronal function. F1000Res, 2017; 6, 1208. doi:  10.12688/f1000research
[37] Hoekstra M, Frodermann V, Van d AT, et al. Leukocytosis and enhanced susceptibility to endotoxemia but not atherosclerosis in adrenalectomized APOE knockout mice. PLoS One, 2013; 8, e80441. doi:  10.1371/journal.pone.0080441
[38] Mueller AD, Parfyonov M, Pavlovski I, et al. The inhibitory effect of sleep deprivation on cell proliferation in the hippocampus of adult mice is eliminated by corticosterone clamp combined with interleukin-1 receptor 1 knockout. Brain Behav Immun, 2014; 35, 102. https://www.researchgate.net/publication/257753863_The_inhibitory_effect_of_sleep_deprivation_on_cell_proliferation_in_the_hippocampus_of_adult_mice_is_eliminated_by_corticosterone_clamp_combined_with_interleukin-1_receptor_1_knockout
[39] Van dGR, Ouweneel AB, Rj VDS, et al. Endogenous glucocorticoids exacerbate cholestasis-associated liver injury and hypercholesterolemia in mice. Toxicol Appl Pharmacol, 2016; 306, 1-7. doi:  10.1016/j.taap.2016.06.031
[40] Quax RA, Manenschijn L, Koper JW, et al. Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol, 2013; 9, 670-86. doi:  10.1038/nrendo.2013.183
[41] Rodriguez JM, Monsalves-Alvarez M, Henriquez S, et al. Glucocorticoid resistance in chronic diseases. Steroids, 2016; 115, 182-92. doi:  10.1016/j.steroids.2016.09.010
[42] King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim Biophys Acta, 2012; 1819, 716-26. doi:  10.1016/j.bbagrm.2012.02.019
[43] Gómez-Abellán P, Díez-Noguera A, Madrid JA, et al. Glucocorticoids affect 24 h clock genes expression in human adipose tissue explant cultures. PLoS One, 2012; 7, e50435. doi:  10.1371/journal.pone.0050435
[44] Balsalobre A, Brown SA, Marcacci L, et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science, 2000; 289, 2344-7. doi:  10.1126/science.289.5488.2344
[45] Russell GM, Kalafatakis K, Lightman SL, et al. The importance of biological oscillators for hypothalamic-pituitary-adrenal activity and tissue glucocorticoid response:coordinating stress and neurobehavioural adaptation. J Neuroendocrinol, 2015; 27, 378-88. doi:  10.1111/jne.12247
[46] Tsang AH, Astiz M, Friedrichs M, et al. Endocrine regulation of circadian physiology. J Endocrinol, 2016; 230, R1-R11. doi:  10.1530/JOE-16-0051
[47] Nicolaides NC, Charmandari E, Chrousos GP, et al. Circadian endocrine rhythms:the hypothalamic-pituitary-adrenal axis and its actions. Ann N Y Acad Sci, 2014; 1318, 71-80. doi:  10.1111/nyas.2014.1318.issue-1
[48] Lamia KA, Papp SJ, Yu RT, et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature, 2011; 480, 552-6. doi:  10.1038/nature10700
[49] Yang S, Liu A, Weidenhammer A, et al. The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology, 2009; 150, 2153-60. doi:  10.1210/en.2008-0705
[50] Bodera P, Stankiewicz W, Kocik J. Interactions of orphanin FQ/nociceptin (OFQ/N) system with immune system factors and hypothalamic-pituitary-adrenal (HPA) axis. Pharmacol Rep, 2014; 66, 288-91. doi:  10.1016/j.pharep.2013.12.003
[51] Felger JC, Lotrich FE. Inflammatory cytokines in depression:Neurobiological mechanisms and therapeutic implications. Neuroscience, 2013; 246, 199-229. doi:  10.1016/j.neuroscience.2013.04.060
[52] Capuron L, Miller AH. Immune System to Brain Signaling:Neuropsychopharmacological Implications. Pharmacol Ther, 2011; 130, 226-38. doi:  10.1016/j.pharmthera.2011.01.014
[53] Bellavance MA, Rivest S. The HPA-Immune Axis and the Immunomodulatory Actions of Glucocorticoids in the Brain. Front Immunol, 2014; 5, 136. http://www.ncbi.nlm.nih.gov/pubmed/24744759
[54] Güler-Yüksel M, Hoes JN, Bultink IEM, et al. Glucocorticoids, Inflammation and Bone. Calcif Tissue In, 2018; 3, 1-15. http://d.old.wanfangdata.com.cn/Periodical/zggzsszz201411026
[55] Vandewalle J, Luypaert A, De BK, et al. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab, 2018; 29, 42-54. doi:  10.1016/j.tem.2017.10.010
[56] Vandevyver S, Dejager L, Tuckermann J, et al. New insights into the anti-inflammatory mechanisms of glucocorticoids:an emerging role for glucocorticoid-receptor-mediated transactivation. Endocrinology, 2013; 154, 993-1007. doi:  10.1210/en.2012-2045
[57] Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci, 2013; 34, 518-30. doi:  10.1016/j.tips.2013.07.003
[58] Paladino N, Mul Fedele ML, Duhart JM, et al. Modulation of mammalian circadian rhythms by tumor necrosis factor-α. Chronobiol Int, 2014; 31, 668-79. doi:  10.3109/07420528.2014.886588
[59] Bantel H, Dr SO. TNF antagonists in IBD:Novel antiinflammatory mechanisms beyond cytokine inhibition. Inflamm Bowel Dis, 2013; 19, E51. doi:  10.1002/ibd.22988
[60] Akker ELTVD, Koper JW, Joosten K, et al. Glucocorticoid receptor mRNA levels are selectively decreased in neutrophils of children with sepsis. Intensive Care Med, 2009; 35, 1247-54. doi:  10.1007/s00134-009-1468-6
[61] Wei M, Cheng X, Wang Q. Circadian control of the immune system. Nat Rev Immunol, 2013; 13, 190-8. doi:  10.1038/nri3386
[62] Sato S, Sakurai T, Ogasawara J, et al. A circadian clock gene, Rev-erbα, modulates the inflammatory function of macrophages through the negative regulation of ccl2 expression. J Immunol, 2014; 192, 407-17. doi:  10.4049/jimmunol.1301982
[63] Oishi Y, Hayashi S, Isagawa T, et al. Bmal1 regulates inflammatory responses in macrophages by modulating enhancer RNA transcription. Sci Rep, 2017; 7, 7086. doi:  10.1038/s41598-017-07100-3
[64] Wang Y, Pati P, Xu Y, et al. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species. PLoS One, 2016; 11, e0155075. doi:  10.1371/journal.pone.0155075
[65] Gagnidze K, Hajdarovic KH, Moskalenko M, et al. Nuclear receptor REV-ERBα mediates circadian sensitivity to mortality in murine vesicular stomatitis virus-induced encephalitis. Proc Natl Acad Sci U S A, 2016; 113, 5730-35. doi:  10.1073/pnas.1520489113
[66] Aoshiba K, Zhou F, Tsuji T, et al. DNA damage as a molecular link in the pathogenesis of COPD in smokers. Eur Respir J, 2012; 39, 1368-76. doi:  10.1183/09031936.00050211
[67] Irwin MR, Opp MR. Sleep Health:Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology, 2017; 42, 129-55. doi:  10.1038/npp.2016.148
[68] Tang X, Guo D, Lin C, et al. hCLOCK Causes Rho-Kinase-Mediated Endothelial Dysfunction and NF-κB-Mediated Inflammatory Responses. Oxid Med Cell Longev, 2015; 2015, 671839. http://www.ncbi.nlm.nih.gov/pubmed/26583060
[69] Stefan S, Karin E, Hong L, et al. Molecular hydrogen reduces LPS-induced neuroinflammation and promotes recovery from sickness behaviour in mice. PLoS One, 2012; 7, e42078. doi:  10.1371/journal.pone.0042078
[70] Susan W, Argel AV, Valérie M, et al. Time-Dependent Effects of Localized Inflammation on Peripheral Clock Gene Expression in Rats. PLoS One, 2013; 8, e59808. doi:  10.1371/journal.pone.0059808
[71] Nagata S, Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol, 2017; 17, 333-40. doi:  10.1038/nri.2016.153
[72] Picerno V, Ferro F, Adinolfi A, et al. One year in review:the pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol, 2015; 33, 551-8. https://reference.medscape.com/medline/abstract/26203933
[73] Nilsonne G, Lekander M, Åkerstedt T, et al. Diurnal Variation of Circulating Interleukin-6 in Humans:A Meta-Analysis. PLoS One, 2016; 11, e0165799. doi:  10.1371/journal.pone.0165799
[74] Yoshida K, Hashiramoto A, Okano T, et al. TNF-α modulates expression of the circadian clock gene Per2 in rheumatoid synovial cells. Scand J Rheumatol, 2013; 42, 276. doi:  10.3109/03009742.2013.765031
[75] Hashiramoto A, Ttsumiyama Y. Mammalian clock gene Cryptochrome regulates arthritis via proinflammatory cytokine TNF-alpha. J Immunol, 2010; 184, 1560-5. doi:  10.4049/jimmunol.0903284
[76] Yoshida K, Nakai A, Kaneshiro K, et al. TNF-α induces expression of the circadian clock gene Bmal1 via dual calcium-dependent pathways in rheumatoid synovial cells. Biochem Biophys Res Commun, 2018; 495, 1675-80. doi:  10.1016/j.bbrc.2017.12.015
[77] Nakamura Y, Nakano N, Ishimaru K, et al. Circadian regulation of allergic reactions by the mast cell clock in mice. J Allergy Clin Immunol, 2014; 133, 568-75. doi:  10.1016/j.jaci.2013.07.040
[78] Tamashiro KL, Sakai RR, Shively CA, et al. Chronic stress, metabolism, and metabolic syndrome. Stress, 2011; 14, 468-74. doi:  10.3109/10253890.2011.606341
[79] Tryon MS, Carter CS, Decant R, et al. Chronic stress exposure may affect the brain's response to high calorie food cues and predispose to obesogenic eating habits. Physiol Behav, 2013; 120, 233-42. doi:  10.1016/j.physbeh.2013.08.010
[80] Kuo T, Mcqueen A, Chen TC, et al. Regulation of Glucose Homeostasis by Glucocorticoids. Adv Exp Med Biol, 2015; 872, 99-126. doi:  10.1007/978-1-4939-2895-8
[81] Howardthompson A, Khan M, Jones M, et al. Type 2 Diabetes Mellitus:Outpatient Insulin Management. Am Fam Physician, 2018; 97, 29-37. http://d.old.wanfangdata.com.cn/Periodical/zhnfmdx201608005
[82] Reagan LP. Diabetes as a chronic metabolic stressor:causes, consequences and clinical complications. Exp Neurol, 2012; 233, 68-78. doi:  10.1016/j.expneurol.2011.02.004
[83] Bursać BN1, Djordjevic AD, Vasiljević AD, et al. Fructose consumption enhances glucocorticoid action in rat visceral adipose tissue. J Nutr Biochem, 2013; 24, 1166-72. doi:  10.1016/j.jnutbio.2012.09.002
[84] Reynolds RM, Chapman KE, Seckl JR, et al. Skeletal muscle glucocorticoid receptor density and insulin resistance. JAMA, 2002; 287, 2505-6. doi:  10.1001/jama.287.19.2505
[85] Marcheva B, Ramsey KM, Bass J. Circadian genes and insulin exocytosis. Cell Logist, 2011; 1, 32-6. doi:  10.4161/cl.1.1.14426
[86] Sadacca LA, Lamia KA, Delemos AS, et al. An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia, 2011; 54, 120-4. doi:  10.1007/s00125-010-1920-8
[87] Narasimamurthy R, Hatori M, Nayak SK, et al. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci USA, 2012; 109, 12662-7. doi:  10.1073/pnas.1209965109
[88] Stamenkovic JA, Olsson AH, Nagorny CL, et al. Regulation of core clock genes in human islets. Metabolism, 2012; 61, 978-85. doi:  10.1016/j.metabol.2011.11.013
[89] Vieira E, Marroquí L, Batista TM, et al. The clock gene Rev-erbα regulates pancreatic β-cell function:modulation by leptin and high-fat diet. Endocrinology, 2012; 153, 592-601. doi:  10.1210/en.2011-1595
[90] Jeong K, He B, Nohara K, et al. Dual attenuation of proteasomal and autophagic BMAL1 degradation in ClockΔ19/+ mice contributes to improved glucose homeostasis. Sci Rep, 2015; 5, 12801. doi:  10.1038/srep12801
[91] Sancar G, Brunner M. Circadian clocks and energy metabolism. Cell Mol Life Sci, 2014; 71, 2667-80. doi:  10.1007/s00018-014-1574-7
[92] Udoh US, Valcin JA, Swain TM, et al. Genetic deletion of the circadian clock transcription factor BMAL1 and chronic alcohol consumption differentially alter hepatic glycogen in mice. Am J Physiol Gastrointest Liver Physiol, 2018; 314, G431-G447. doi:  10.1152/ajpgi.00281.2017
[93] Chen L, Yang G. PPARs Integrate the Mammalian Clock and Energy Metabolism. PPAR Res, 2014; 2014, 653017. http://cn.bing.com/academic/profile?id=6d55b2d80412ced3cbb8f8a0d489ac26&encoded=0&v=paper_preview&mkt=zh-cn
[94] Grimaldi B, Bellet MM, Katada S, et al. PER2 Controls Lipid Metabolism by Direct Regulation of PPARγ. Cell Metab, 2010; 12, 509-20. doi:  10.1016/j.cmet.2010.10.005
[95] Jagannath A, Peirson SN, Foster RG. Sleep and circadian rhythm disruption in neuropsychiatric illness. Curr Opin Neurobiol, 2013; 23, 888-94. doi:  10.1016/j.conb.2013.03.008
[96] Herman JP, Mcklveen JM, Solomon MB, et al. Neural regulation of the stress response:glucocorticoid feedback mechanisms. Braz J Med Biol Res, 2012; 45, 292. doi:  10.1590/S0100-879X2012007500041
[97] Ball LJ, Palesh O, Kriegsfeld LJ. The Pathophysiologic Role of Disrupted Circadian and Neuroendocrine Rhythms in Breast Carcinogenesis. Endocr Rev, 2016; 37, 450-66. doi:  10.1210/er.2015-1133
[98] Belvederi MM, Pariante C, Mondelli V, et al. HPA axis and aging in depression:systematic review and meta-analysis. Psychoneuroendocrinology, 2014; 41, 46. doi:  10.1016/j.psyneuen.2013.12.004
[99] Nfw Z, Spence DW, Bahammam AS, et al. Chronobiological theories of mood disorder. Eur Arch Psychiatry Clin Neurosci, 2018; 268, 107-18. doi:  10.1007/s00406-017-0835-5
[100] Shi S, White MJ, Borsetti HM, et al. Molecular analyses of circadian gene variants reveal sex-dependent links between depression and clocks. Transl Psychiatry, 2016; 6, e748. doi:  10.1038/tp.2016.9
[101] Gouin JP, Connors J, Kiecolt-Glaser JK, et al. Altered expression of circadian rhythm genes among individuals with a history of depression. J Affect Disord, 2010; 126, 161-6. http://cn.bing.com/academic/profile?id=e22fb47ebe9fd6532b86729c38b59e44&encoded=0&v=paper_preview&mkt=zh-cn
[102] Bahk YC, Han E, Lee SH. Biological rhythm differences and suicidal ideation in patients with major depressive disorder. J Affect Disord, 2014; 168, 294-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0233978786
[103] Oglodek EA, Just MJ, Szromek AR. Araszkiewicz A:Melatonin and neurotrophins NT-3, BDNF, NGF in patients with varying levels of depression severity. Pharmacol Rep, 2016; 68, 945-51. doi:  10.1016/j.pharep.2016.04.003
[104] Quera Salva MA, Hartley S, Barbot F, et al. Circadian rhythms, melatonin and depression. Curr Pharm Des, 2011; 17, 1459-70. doi:  10.2174/138161211796197188
[105] Castro-Vale I, van Rossum EF, Machado JC, et al. Genetics of glucocorticoid regulation and posttraumatic stress disorder-what do we know? Neurosci Biobehav Rev, 2016; 63, 143-57. doi:  10.1016/j.neubiorev.2016.02.005
[106] Mcnerney MW, Sheng T, Nechvatal JM, et al. Integration of neural and epigenetic contributions to posttraumatic stress symptoms:The role of hippocampal volume and glucocorticoid receptor gene methylation. PLoS One, 2018; 13, e0192222. doi:  10.1371/journal.pone.0192222
[107] Agorastos A, Kellner M, Baker DG, et al. When time stands still:an integrative review on the role of chronodisruption in posttraumatic stress disorder. Curr Opin Psychiatry, 2014; 27, 385-92. doi:  10.1097/YCO.0000000000000079
[108] Thompson RS, Strong PV, Clark PJ, et al. Repeated fear-induced diurnal rhythm disruptions predict PTSD-like sensitized physiological acute stress responses in F344 rats. Acta Physiol, 2014; 211, 447-65. doi:  10.1111/apha.12239
[109] Banerjee SB, Morrison FG, Ressler KJ. Genetic approaches for the study of PTSD:Advances and challenges. Neurosci Lett, 2017; 649, 139-46. doi:  10.1016/j.neulet.2017.02.058
[110] Logue MW, Baldwin C, Guffanti G, et al. A genome-wide association study of posttraumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry, 2013; 18, 937-42. doi:  10.1038/mp.2012.113
[111] Koresh O, Kozlovsky N, Kaplan Z, et al. The long-term abnormalities in circadian expression of Period 1 and Period 2 genes in response to stress is normalized by agomelatine administered immediately after exposure. Eur Neuropsychopharmacol, 2012; 22, 205-21. doi:  10.1016/j.euroneuro.2011.07.012
[112] Johansson AS, Owe-Larsson B, Hetta J, et al. Altered circadian clock gene expression in patients with schizophrenia[J]. Schizophr Res, 2016; 174, 17-23. doi:  10.1016/j.schres.2016.04.029
[113] Wulff K, Dijk DJ, Middleton B, et al. Sleep and circadian rhythm disruption in schizophrenia. Br J Psychiatry, 2012; 200, 308-16. doi:  10.1192/bjp.bp.111.096321
[114] Pei JC, Liu CM, Lai WS. Distinct phenotypes of new transmembrane-domain neuregulin 1 mutant mice and the rescue effects of valproate on the observed schizophrenia-related cognitive deficits. Front Behav Neurosci, 2014; 8, 126. http://cn.bing.com/academic/profile?id=841f558b83d99171ed5b2b9b6cfcb2ac&encoded=0&v=paper_preview&mkt=zh-cn
[115] Harrison PJ. Recent genetic findings in schizophrenia and their therapeutic relevance. J Psychopharmacol, 2015; 29, 85-96. doi:  10.1177/0269881114553647
[116] Pauls S, Foley NC, Foley DK, et al. Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice. Eur J Neurosci, 2014; 40, 2528-40. doi:  10.1111/ejn.12631
[117] Liberman AR, Kwon SB, Vu HT, et al. Circadian Clock Model Supports Molecular Link Between PER3 and Human Anxiety. Sci Rep, 2017; 7, 9893. doi:  10.1038/s41598-017-07957-4
[118] Cissé YM, Peng J, Nelson RJ. Dim light at night prior to adolescence increases adult anxiety-like behaviors. Chronobio Int, 2016; 33, 1473-80. doi:  10.1080/07420528.2016.1221418
[119] Dimitri DB, Giuseppe G, Anne B, et al. Cognitive dysfunction, elevated anxiety, and reduced cocaine response in circadian clock-deficient cryptochrome knockout mice. Front Behav Neurosci, 2013; 7, 152. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3807562
[120] Hvolby A. Associations of sleep disturbance with ADHD:implications for treatment. Atten Defic Hyperact Disord, 2015; 7, 1-18. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_c3d648ac2ef34f36a514a2923becfb6d
[121] Andersson H, Sonnesen L. Sleepiness, occlusion, dental arch and palatal dimensions in children attention deficit hyperactivity disorder (ADHD). Eur Arch Paediatr Dent, 2018; 19, 1-7. doi:  10.1007/s40368-018-0328-x
[122] Tonetti L, Conca A, Giupponi G, et al. Circadian activity rhythm in adult attention-deficit hyperactivity disorder. J Psychiatr Res, 2018; 103, 1. doi:  10.1016/j.jpsychires.2018.05.002
[123] Kissling C, Retz W, Wiemann S, et al. A polymorphism at the 3'-untranslated region of the CLOCK gene is associated with adult attention-deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet, 2008; 147B, 333-8. doi:  10.1002/(ISSN)1552-485X
[124] Xu X, Breen G, Chen CK, et al. Association study between a polymorphism at the 3'-untranslated region of CLOCK gene and attention deficit hyperactivity disorder. Behav Brain Funct, 2010; 6, 48. doi:  10.1186/1744-9081-6-48
[125] Jeong SH, Yu JC, Lee CH, et al. Human CLOCK gene-associated attention deficit hyperactivity disorder-related features in healthy adults:quantitative association study using Wender Utah Rating Scale. Eur Arch Psychiatry Clin Neurosci, 2014; 264, 71-81. doi:  10.1007/s00406-013-0443-y
[126] Baird AL, Coogan AN, Siddiqui A, et al. Adult attention-deficit hyperactivity disorder is associated with alterations in circadian rhythms at the behavioural, endocrine and molecular levels. Mol Psychiatry, 2012; 17, 988-95. doi:  10.1038/mp.2011.149