[1] Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin, 2015; 65, 87−108. doi:  10.3322/caac.21262
[2] Li HR, Wu XH, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol, 2016; 27, e43. doi:  10.3802/jgo.2016.27.e43
[3] Luo H, Xu XH, Yang J, et al. Genome-wide somatic copy number alteration analysis and database construction for cervical cancer. Mol Genet Genomics, 2020; 295, 765−73. doi:  10.1007/s00438-019-01636-x
[4] Balasubramaniam SD, Balakrishnan V, Oon CE, et al. Key Molecular Events in Cervical Cancer Development. Medicina (Kaunas), 2019; 55, 384. doi:  10.3390/medicina55070384
[5] Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract, 2019; 215, 152556. doi:  10.1016/j.prp.2019.152556
[6] Shafabakhsh R, Reiter RJ, Mirzaei H, et al. Melatonin: a new inhibitor agent for cervical cancer treatment. J Cell Physiol, 2019; 234, 21670−82. doi:  10.1002/jcp.28865
[7] Chen YH, Hou YY, Yang Y, et al. Gene expression changes in cervical squamous cancers following neoadjuvant interventional chemoembolization. Clin Chim Acta, 2019; 493, 79−86. doi:  10.1016/j.cca.2019.02.012
[8] Aguda BD. Modeling microRNA-transcription factor networks in cancer. Adv Exp Med Biol, 2013; 774, 149−67.
[9] Granados López AJ, López JA. Multistep model of cervical cancer: participation of miRNAs and coding genes. Int J Mol Sci, 2014; 15, 15700−33. doi:  10.3390/ijms150915700
[10] Tutar Y. miRNA and cancer; computational and experimental approaches. Curr Pharm Biotechnol, 2014; 15, 429. doi:  10.2174/138920101505140828161335
[11] Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017; 16, 203−22. doi:  10.1038/nrd.2016.246
[12] Mirzaei H, Yazdi F, Salehi R, et al. SiRNA and epigenetic aberrations in ovarian cancer. J Can Res Ther, 2016; 12, 498−508. doi:  10.4103/0973-1482.153661
[13] Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol, 2014; 9, 287−314. doi:  10.1146/annurev-pathol-012513-104715
[14] Aghdam AM, Amiri A, Salarinia R, et al. MicroRNAs as diagnostic, prognostic, and therapeutic biomarkers in prostate cancer. Crit Rev Eukaryot Gene Expr, 2019; 29, 127−39. doi:  10.1615/CritRevEukaryotGeneExpr.2019025273
[15] Lin SB, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer, 2015; 15, 321−33. doi:  10.1038/nrc3932
[16] Savardashtaki A, Shabaninejad Z, Movahedpour A, et al. miRNAs derived from cancer-associated fibroblasts in colorectal cancer. Epigenomics, 2019; 11, 1627−45. doi:  10.2217/epi-2019-0110
[17] Naeli P, Yousefi F, Ghasemi Y, et al. The role of MicroRNAs in lung cancer: implications for diagnosis and therapy. Curr Mol Med, 2020; 20, 90−101. doi:  10.2174/1566524019666191001113511
[18] Khani P, Nasri F, Khani Chamani F, et al. Genetic and epigenetic contribution to astrocytic gliomas pathogenesis. J Neurochem, 2019; 148, 188−203. doi:  10.1111/jnc.14616
[19] Ikeda K, Horie-Inoue K, Ueno T, et al. miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Rep, 2015; 5, 13170. doi:  10.1038/srep13170
[20] Wei XF, Li H, Zhang BW, et al. miR-378a-3p promotes differentiation and inhibits proliferation of myoblasts by targeting HDAC4 in skeletal muscle development. RNA Biol, 2016; 13, 1300−9. doi:  10.1080/15476286.2016.1239008
[21] Xu ZH, Yao TZ, Liu W. miR-378a-3p sensitizes ovarian cancer cells to cisplatin through targeting MAPK1/GRB2. Biomed Pharmacother, 2018; 107, 1410−7. doi:  10.1016/j.biopha.2018.08.132
[22] Li H, Dai SJ, Zhen TT, et al. Clinical and biological significance of miR-378a-3p and miR-378a-5p in colorectal cancer. Eur J Cancer, 2014; 50, 1207−21. doi:  10.1016/j.ejca.2013.12.010
[23] Nagy Á, Lánczky A, Menyhárt O, et al. Author correction: validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep, 2018; 8, 11515. doi:  10.1038/s41598-018-27521-y
[24] Ditto A, Bogani G, Leone Roberti Maggiore U, et al. Oncologic effectiveness of nerve-sparing radical hysterectomy in cervical cancer. J Gynecol Oncol, 2018; 29, e41. doi:  10.3802/jgo.2018.29.e41
[25] Siegel EM, Riggs BM, Delmas AL, et al. Quantitative DNA methylation analysis of candidate genes in cervical cancer. PLoS One, 2015; 10, e0122495. doi:  10.1371/journal.pone.0122495
[26] Sadri Nahand J, Moghoofei M, Salmaninejad A, et al. Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: a review. Int J Cancer, 2020; 146, 305−20. doi:  10.1002/ijc.32688
[27] Nahand JS, Taghizadeh-Boroujeni S, Karimzadeh M, et al. microRNAs: new prognostic, diagnostic, and therapeutic biomarkers in cervical cancer. J Cell Physiol, 2019; 234, 17064−99. doi:  10.1002/jcp.28457
[28] Zhang T, Zou P, Wang TJ, et al. Down-regulation of miR-320 associated with cancer progression and cell apoptosis via targeting Mcl-1 in cervical cancer. Tumor Biol, 2016; 37, 8931−40. doi:  10.1007/s13277-015-4771-6
[29] Yu JJ, Wang Y, Dong RF, et al. Circulating microRNA-218 was reduced in cervical cancer and correlated with tumor invasion. J Cancer Res Clin Oncol, 2012; 138, 671−4. doi:  10.1007/s00432-012-1147-9
[30] Zhao S, Yao D, Chen J, et al. MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS One, 2015; 10, e0120905. doi:  10.1371/journal.pone.0120905
[31] Sanches JGP, Xu YC, Yabasin IB, et al. miR-501 is upregulated in cervical cancer and promotes cell proliferation, migration and invasion by targeting CYLD. Chem Biol Interact, 2018; 285, 85−95. doi:  10.1016/j.cbi.2018.02.024
[32] Alsina-Sanchís E, Figueras A, Lahiguera A, et al. TGFβ controls ovarian cancer cell proliferation. Int J Mol Sci, 2017; 18, 1658. doi:  10.3390/ijms18081658
[33] Robert J. Biologie de la métastase biology of cancer metastasis. Bull Cancer, 2013; 100, 333−42. doi:  10.1684/bdc.2013.1724