[1] Bennett J E, Taddei C, Fortunato L, et al. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387,1377–96. DOI: 10.1016/S0140-6736(16)30054-X
[2] Choi JH, Kim MK, Yeo SH, et al. Short-term Cudrania tricuspidata fruit vinegar administration attenuates obesity in high-fat diet-fed mice by improving fat accumulation and metabolic parameters. Sci Rep, 2020; 10, 21102. doi:  10.1038/s41598-020-78166-9
[3] Zhang JY, Xiao X, Dong Y, et al. The anti-obesity effect of fermented barley extracts with Lactobacillus plantarum dy-1 and Saccharomyces cerevisiae in diet-induced obese rats. Food Funct, 2017; 8, 1132−43. doi:  10.1039/C6FO01350C
[4] Zhang JY, Xiao X, Dong Y, et al. Fermented barley extracts with Lactobacillus plantarum dy-1 changes serum metabolomic profiles in rats with high-fat diet-induced obesity. Int J Food Sci Nutr, 2019; 70, 303−10. doi:  10.1080/09637486.2018.1511687
[5] Shen PY, Yue YR, Park Y. A living model for obesity and aging research: Caenorhabditis elegans. Crit Rev Food Sci Nutr, 2018; 58, 741−54. doi:  10.1080/10408398.2016.1220914
[6] Kim HM, Do CH, Lee DH. Characterization of taurine as anti-obesity agent in C. elegans. J Biomed Sci, 2010; 17, S33. doi:  10.1186/1423-0127-17-S1-S33
[7] Zhang T, Xie LL, Liu RJ, et al. Differentiated 4, 4-dimethylsterols from vegetable oils reduce fat deposition depending on the NHR-49/SCD pathway in Caenorhabditis elegans. Food Funct, 2021; 12, 6841−50. doi:  10.1039/D1FO00669J
[8] Bai J, Li J, Pan RR, et al. Polysaccharides from Volvariella volvacea inhibit fat accumulation in C. elegans dependent on the aak-2/nhr-49-mediated pathway. J Food Biochem, 2021; 45, e13912.
[9] Sun QC, Yue YR, Shen PY, et al. Cranberry product decreases fat accumulation in Caenorhabditis elegans. J Med Food, 2016; 19, 427−33. doi:  10.1089/jmf.2015.0133
[10] Peng HM, Wei ZH, Luo HJ, et al. Inhibition of fat accumulation by hesperidin in Caenorhabditis elegans. J Agric Food Chem, 2016; 64, 5207−14. doi:  10.1021/acs.jafc.6b02183
[11] Cheng K. Studies on the regulation of lipid metabolism and mechanism of Caeneorhabditis elegans by fermented barley extract. Jiangsu University. 2018. (In Chinese
[12] Zheng J, Enright F, Keenan M, et al. Resistant starch, fermented resistant starch, and short-chain fatty acids reduce intestinal fat deposition in Caenorhabditis elegans. J Agric Food Chem, 2010; 58, 4744−8. doi:  10.1021/jf904583b
[13] Deng L, Denham JE, Arya C, et al. Inhibition underlies fast undulatory locomotion in Caenorhabditis elegans. Eneuro, 2021; 8, 0241-20.
[14] Rawsthorne H, Calahorro F, Feist E, et al. Neuroligin dependence of social behaviour in Caenorhabditis elegans provides a model to investigate an autism-associated gene. Hum Mol Genet 2020; 29, 3546-53.
[15] Vayndorf EM, Lee SS, Liu RH. Whole apple extracts increase lifespan, healthspan and resistance to stress in Caenorhabditis elegans. J Funct Foods, 2013; 5, 1235−43. doi:  10.1016/j.jff.2013.04.006
[16] Sayed SMA, Siems K, Schmitz-Linneweber C, et al. Enhanced healthspan in Caenorhabditis elegans treated with extracts from the traditional Chinese medicine plants Cuscuta chinensis Lam. and Eucommia ulmoides oliv. Front Pharmacol, 2021; 12, 604435. doi:  10.3389/fphar.2021.604435
[17] Xiao X, Tan C, Sun XJ, et al. Fermented barley β‐glucan regulates fat deposition in Caenorhabditis elegans. J Sci Food Agric, 2020; 100, 3408−17. doi:  10.1002/jsfa.10375
[18] Li C, Ning LN, Cui XD, et al. Recombinant buckwheat trypsin inhibitor decreases fat accumulation via the IIS pathway in Caenorhabditis elegans. Exp Gerontol, 2019; 128, 110753. doi:  10.1016/j.exger.2019.110753
[19] Jeon TI, Osborne TF. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab, 2012; 23, 65−72. doi:  10.1016/j.tem.2011.10.004
[20] Liu HL, Li D, Zhang RJ, et al. Lipid metabolic sensors of MDT-15 and SBP-1 regulated the response to simulated microgravity in the intestine of Caenorhabditis elegans. Biochem Biophys Res Commun, 2020; 528, 28−34. doi:  10.1016/j.bbrc.2020.05.099
[21] Park D, Jones KL, Lee H, et al. Repression of a potassium channel by nuclear hormone receptor and TGF-β signaling modulates insulin signaling in Caenorhabditis elegans. PLoS Genet, 2012; 8, e1002519. doi:  10.1371/journal.pgen.1002519
[22] Kumar N, Jain V, Singh A, et al. Genome-wide endogenous DAF-16/FOXO recruitment dynamics during lowered insulin signalling in C. elegans. Oncotarget, 2015; 6, 41418−33. doi:  10.18632/oncotarget.6282
[23] Gao CF, Gao ZG, Greenway FL, et al. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutr Res, 2015; 35, 834−43. doi:  10.1016/j.nutres.2015.06.007
[24] Gao CF, King ML, Fitzpatrick ZL, et al. Prowashonupana barley dietary fibre reduces body fat and increases insulin sensitivity in Caenorhabditis elegans model. J Funct Foods, 2015; 18, 564−74. doi:  10.1016/j.jff.2015.08.014
[25] Silverstein-Metzler MG, Shively CA, Clarkson TB, et al. Sertraline inhibits increases in body fat and carbohydrate dysregulation in adult female cynomolgus monkeys. Psychoneuroendocrinology, 2016; 68, 29−38. doi:  10.1016/j.psyneuen.2016.02.012
[26] Thomas JM, Dourish CT, Tomlinson J, et al. The 5-HT2C receptor agonist meta-chlorophenylpiperazine (mCPP) reduces palatable food consumption and BOLD fMRI responses to food images in healthy female volunteers. Psychopharmacology, 2018; 235, 257−67. doi:  10.1007/s00213-017-4764-9
[27] Lin Y, Yang N, Bao B, et al. Luteolin reduces fat storage in Caenorhabditis elegans by promoting the central serotonin pathway. Food Funct, 2020; 11, 730−40. doi:  10.1039/C9FO02095K
[28] Pereira-Sousa J, Ferreira-Lomba B, Bellver-Sanchis A, et al. Identification of the 5-HT1A serotonin receptor as a novel therapeutic target in a C. elegans model of Machado-Joseph disease. Neurobiol Dis, 2021; 152, 105278. doi:  10.1016/j.nbd.2021.105278