[1] Refsum H, Ueland PM, Nygard O, et al. Homocysteine and cardiovascular disease. Annu Rev Med, 1998; 49, 31−62. doi:  10.1146/annurev.med.49.1.31
[2] Selhub J. Homocysteine metabolism. Annu Rev Nutr, 1999; 19, 217−46. doi:  10.1146/annurev.nutr.19.1.217
[3] De Bree A, Verschuren WM, Kromhout D, et al. Homocysteine determinants and the evidence to what extent homocysteine determines the risk of coronary heart disease. Pharmacol Rev, 2002; 54, 599−618. doi:  10.1124/pr.54.4.599
[4] Song F, Poljak A, Smythe GA, et al. Plasma biomarkers for mild cognitive impairment and Alzheimer's disease. Brain Res Rev, 2009; 61, 69−80. doi:  10.1016/j.brainresrev.2009.05.003
[5] Elsherbiny NM, Sharma I, Kira D, et al. Homocysteine induces inflammation in retina and brain. Biomolecules, 2020; 10, 393. doi:  10.3390/biom10030393
[6] Alam SF, Kumar S, Ganguly P. Measurement of homocysteine: a historical perspective. J Clin Biochem Nutr, 2019; 65, 171−7. doi:  10.3164/jcbn.19-49
[7] Kumar A, Palfrey HA, Pathak R, et al. The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond), 2017; 14, 78. doi:  10.1186/s12986-017-0233-z
[8] Skovierova H, Vidomanova E, Mahmood S, et al. The molecular and cellular effect of homocysteine metabolism imbalance on human health. Int J Mol Sci, 2016; 17, 1733. doi:  10.3390/ijms17101733
[9] Stipanuk MH. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr, 2004; 24, 539−77. doi:  10.1146/annurev.nutr.24.012003.132418
[10] Zaric BL, Obradovic M, Bajic V, et al. Homocysteine and hyperhomocysteinaemia. Curr Med Chem, 2019; 26, 2948−61. doi:  10.2174/0929867325666180313105949
[11] Lynn BB, Patrick JS, Daniel JR. Biomarkers of Nutrition for Development- Folate Review. J Nutr, 2015; 145, 1636S−1680S. doi:  10.3945/jn.114.206599
[12] Y LIU, YQ LIU, T Morita, et al. Effect of dietary supplementation with folate on choline deficiency-induced hyperhomocysteinemia in rats. J Nutr Sci Vitaminol, 2012; 58, 20−8. doi:  10.3177/jnsv.58.20
[13] Y LIU, YQ LIU, T Morita, et al. Effects of betaine supplementation and choline deficiency on folate deficiency-induced hyperhomocysteinemia in rats. J Nutr Sci Vitaminol, 2012; 58, 69−77. doi:  10.3177/jnsv.58.69
[14] Cui S, Li W, Wang P, Lv X, et al. Folic acid inhibits homocysteineinduced cell apoptosis in human umbilical vein endothelial cells. Mol Cell Biochem, 2018; 444, 77−86. doi:  10.1007/s11010-017-3232-5
[15] Dayal S, Lentz SR. Murine models of hyperhomocysteinemia and their vascular phenotypes. Arterioscler Thromb Vasc Biol, 2008; 28, 1596−605. doi:  10.1161/ATVBAHA.108.166421
[16] Finkelstein JD, Kyle WE, Martin JL, et al. Activation of cystathionine synthase by adenosylmethionine and adenosylethionine. Biochem Biophys Res Commun, 1975; 66, 81−7. doi:  10.1016/S0006-291X(75)80297-X
[17] Josiane S, Aline MC, Dirce MM. Genetic Variants Involved in One-Carbon Metabolism: Polymorphism Frequencies and Differences in Homocysteine Concentrations in the Folic Acid Fortification Era. Nutrients, 2017; 9, 539−50. doi:  10.3390/nu9060539
[18] Williams KT, Garrow TA, Schalinske KL. Type I diabetes leads to tissue-specific DNA hypomethylation in male rats. J Nutr, 2008; 138, 2064−9. doi:  10.3945/jn.108.094144
[19] McGregor DO, Dellow WJ, Lever M, et al. Dimethylglycine accumulates in uremia and predicts elevated plasma homocysteine concentrations. Kidney Int, 2001; 59, 2267−72. doi:  10.1046/j.1523-1755.2001.00743.x
[20] Finkelstein JD, Harris BJ, Kyle WE. Methionine metabolism in mammals: kinetic study of betaine-homocysteine methyltransferase. Arch Biochem Biophys, 1972; 153, 320−4. doi:  10.1016/0003-9861(72)90451-1
[21] Pajares MA, Perez-Sala D. Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism? Cell Mol Life Sci, 2006; 63, 2792−803. doi:  10.1007/s00018-006-6249-6
[22] Wagner C. Cellular folate binding proteins; function and significance. Annu Rev Nutr, 1982; 2, 229−48. doi:  10.1146/annurev.nu.02.070182.001305
[23] Allen RH, Stabler SB, Lindenbaum J. Serum betaine, N, N-dimethylglycine and N-methylglycine levels in patients with cobalamin and folate deficiency and related inborn errors of metabolism. Metabolism, 1993; 42, 1448−60. doi:  10.1016/0026-0495(93)90198-W
[24] Allen RH, Stabler SB, Savage DG, et al. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J, 1993; 7, 1344−53. doi:  10.1096/fasebj.7.14.7901104
[25] Verhoef P, van Vliet T, Katan MB. A high-protein diet increases postprandial but not fasting plasma total homocysteine concentrations: a dietary controlled, crossover trial in healthy volunteers. Am J Clin Nutr, 2005; 82, 553−8. doi:  10.1093/ajcn/82.3.553
[26] Durand P, Fortin LJ, Lussier-Cacan S, et al. Hyperhomocysteinemia induced by folic acid deficiency and methionine load–applications of a modified HPLC method. Clin Chim Acta, 1996; 252, 83−93. doi:  10.1016/0009-8981(96)06325-5
[27] Cook RJ, Horne DW, Wagner C. Effect of dietary methyl group deficiency on one-carbon metabolism in rats. J Nutr, 1989; 119, 612−7. doi:  10.1093/jn/119.4.612
[28] Laryea MD, Steinhagen F, Pawliczek S, et al. Simple method for the routine determination of betaine and N, N-dimethylglycine in blood and urine. Clin Chem, 1998; 44, 1937−41. doi:  10.1093/clinchem/44.9.1937
[29] Shimoda M. Simultaneous determination of tetrahydrofolate and N5-methylterahydrofolate in pig plasma by high-performance liquid chromatography with electrochemical detection. J Vet Med Sci, 1992; 54, 249−53. doi:  10.1292/jvms.54.249
[30] Finkelstein JD, Mudd SE. Trans-sulfuration in mammals: the methionine-sparing effect of cystine. J Biol Chem, 1967; 242, 873−80. doi:  10.1016/S0021-9258(18)96205-8
[31] Huang L, Zhang J, Hayakawa T, et al. Assays of methylenetetrahydrofolate reductase and methionine synthase activities by monitoring 5-methyltetrahydrofolate and tetrahydrofolate using high-performance liquid chromatography with fluorescence detection. Anal Biochem, 2001; 299, 253−9. doi:  10.1006/abio.2001.5421
[32] Mudd SH, Finkelstein JD, Irreverre F, et al. Transsulfuration in mammals. Microassay and tissue distributions of three enzymes of the pathway. J Biol Chem, 1965; 240, 4382−92.
[33] Einarsson S, Josefsson B, Lagerkvist S. Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr, 1983; 282, 609−18. doi:  10.1016/S0021-9673(00)91638-8
[34] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem, 1951; 193, 265−75. doi:  10.1016/S0021-9258(19)52451-6
[35] Most SJ, Lang D, McDowell IFW, et al. Folate, homocysteine, endothelial function and cardiovascular disease. J Nutr Biochem, 2004; 15, 64−79. doi:  10.1016/j.jnutbio.2003.08.010
[36] Kim YI. Role of folate in colon cancer development and progression. J Nutr, 2003; 133, 3731S−3739S. doi:  10.1093/jn/133.11.3731S
[37] Kim Y, Miller JW, da Costa K, et al. Severe folate deficiency causes secondary depletion of choline and phosphocholine in rat liver. J Nutr, 1994; 124, 2197−203. doi:  10.1093/jn/124.11.2197
[38] Lee KH, Cava M, Amiri P, et al. Betaine: homocysteine methyltransferase from rat liver: purification and inhibition by a boronic acid substrate analog. Arch Biochem Biophys, 1992; 292, 77−86. doi:  10.1016/0003-9861(92)90053-Y