[1] Drosten C, Günther S, Preiser W, et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 2003; 348, 1967-76. doi:  10.1056/NEJMoa030747
[2] Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003; 300, 1394-9. doi:  10.1126/science.1085952
[3] Fouchier RA, Kuiken T, Schutten M, et al. Aetiology:Koch's postulates fulfilled for SARS virus. Nature, 2003; 423, 240. doi:  10.1038/423240a
[4] Jamieson DJ, Honein MA, Rasmussen SA, et al. H1N1 2009 influenza virus infection during pregnancy in the USA. Lancet, 2009; 374, 451-8. doi:  10.1016/S0140-6736(09)61304-0
[5] Neumann G, Noda T, Kawaoka Y. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 2009; 459, 931-9. doi:  10.1038/nature08157
[6] Gao R, Cao B, Hu Y, et al. Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med, 2013; 368, 1888-97. doi:  10.1056/NEJMoa1304459
[7] Chen Y, Liang W, Yang S, et al. Human infections with the emerging avian influenza A H7N9 virus from wet market poultry:clinical analysis and characterisation of viral genome. Lancet, 2013; 381, 1916-25. doi:  10.1016/S0140-6736(13)60903-4
[8] Uyeki TM, Cox NJ. Global concerns regarding novel influenza A (H7N9) virus infections. N Engl J Med, 2013; 368, 1862-4. doi:  10.1056/NEJMp1304661
[9] Memish ZA, Mishra N, Olival KJ, et al. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis, 2013; 19, 1819-23. https://www.researchgate.net/publication/258425706_Middle_East_Respiratory_Syndrome_Coronavirus_in_Bats_Saudi_Arabia
[10] Guery B, Poissy J, el Mansouf L, et al. Clinical features and viral diagnosis of two cases of infection with Middle East Respiratory Syndrome coronavirus:a report of nosocomial transmission. Lancet, 2013; 381, 2265-72. doi:  10.1016/S0140-6736(13)60982-4
[11] Balkhy H. The emergence of a new corona virus——MERS-CoV:hind sight is always 20/20. J Infect Public Health, 2013; 6, 317-8.
[12] Kupferschmidt K. Emerging infectious diseases. Link to MERS virus underscores bats' puzzling threat. Science, 2013; 341, 948-9. doi:  10.1126/science.341.6149.948
[13] Gire SK, Goba A, Andersen KG, et al. Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science, 2014; 345, 1369-72. doi:  10.1126/science.1259657
[14] Park DJ, Dudas G, Wohl S, et al. Ebola Virus epidemiology, transmission, and evolution during seven months in Sierra Leone. Cell, 2015; 161, 1516-26. doi:  10.1016/j.cell.2015.06.007
[15] Storch GA. Diagnostic virology. Clin Infect Dis, 2000; 31, 739-51. doi:  10.1086/314015
[16] Wylie TN, Wylie KM, Herter BN, et al. Enhanced virome sequencing using targeted sequence capture. Genome Res, 2015; 12, 1910-20.
[17] Zhao J, Ragupathy V, Liu J, et al. Nanomicroarray and multiplex next-generation sequencing for simultaneous identification and characterization of influenza viruses. Emerg Infect Dis, 2015; 21, 400-8. https://wwwnc.cdc.gov/eid/article/21/3/pdfs/14-1169.pdf
[18] Wu Q, Ding SW, Zhang Y, et al. Identification of viruses and viroids by next-generation sequencing and homology-dependent and homology-independent algorithms. Annu Rev Phytopathol, 2015; 53, 425-44. doi:  10.1146/annurev-phyto-080614-120030
[19] He B, Zhang Y, Xu L, et al. Identification of diverse alphacoronaviruses and genomic characterization of a novel severe acute respiratory syndrome-like coronavirus from bats in China. J Virol, 2014; 88, 7070-82. doi:  10.1128/JVI.00631-14
[20] Yu G, Greninger AL, Isa P, et al. Discovery of a novel polyomavirus in acute diarrheal samples from children. PLos One, 2012; 7, e49449. doi:  10.1371/journal.pone.0049449
[21] Bialasiewicz S, McVernon J, Nolan T, et al. Detection of a divergent Parainfluenza 4 virus in an adult patient with influenza like illness using next-generation sequencing. BMC Infect Dis, 2014; 14, 275. doi:  10.1186/1471-2334-14-275
[22] Lorusso A, Marcacci M, Ancora M, et al. Complete genome sequence of Bluetongue virus serotype 1 circulating in Italy, obtained through a fast next-generation sequencing protocol. Genome Announc, 2014; 2, 1. https://www.researchgate.net/publication/260196393_Complete_Genome_Sequence_of_Bluetongue_Virus_Serotype_1_Circulating_in_Italy_Obtained_through_a_Fast_Next-Generation_Sequencing_Protocol
[23] Pessôa R, Watanabe JT, Nukui Y, et al. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLos One, 2014; 9, e93374. doi:  10.1371/journal.pone.0093374
[24] Baker KS, Leggett RM, Bexfield NH, et al. Metagenomic study of the viruses of African straw-coloured fruit bats:detection of a chiropteran poxvirus and isolation of a novel adenovirus. Virology, 2013; 441, 95-106. doi:  10.1016/j.virol.2013.03.014
[25] Kohl C, Brinkmann A, Dabrowski PW, et al. Protocol for metagenomic virus detection in clinical specimens. Emerg Infect Dis, 2015; 21, 48-57. https://wwwnc.cdc.gov/eid/article/21/1/14-0766-techapp1.pdf
[26] Hall RJ, Wang J, Todd AK, et al. Evaluation of rapid and simple techniques for the enrichment of viruses prior to metagenomic virus discovery. J Virol Methods, 2014; 195, 194-204. doi:  10.1016/j.jviromet.2013.08.035
[27] Froussard P. A random-PCR method (rPCR) to construct whole cDNA library from low amounts of RNA. Nucleic Acids Res, 1992; 20, 2900. doi:  10.1093/nar/20.11.2900
[28] Froussard P. Sequence-independent, single-primer amplification (SISPA) of complex DNA populations. Mol Cell Probes, 1991; 6, 473-81. https://www.researchgate.net/publication/21491792_Sequence-independent_single-primer_amplification_SISPA_of_complex_DNA_populations
[29] Djikeng A, Halpin R, Kuzmickas R, et al. Viral genome sequencing by random priming methods. BMC genomics, 2008; 9, 5. doi:  10.1186/1471-2164-9-5
[30] Zoll J, Rahamat-Langendoen J, Ahout I, et al. Direct multiplexed whole genome sequencing of respiratory tract samples reveals full viral genomic information. J Clin Virol, 2015; 66, 6-11. doi:  10.1016/j.jcv.2015.02.010
[31] Endoh D, Mizutani T, Kirisawa R, et al. Species-independent detection of RNA virus by representational difference analysis using non-ribosomal hexanucleotides for reverse transcription. Nucleic Acids Res, 2005; 33, e65. doi:  10.1093/nar/gni064
[32] Routh A, Head SR, Ordoukhanian P, et al. ClickSeq:fragmentation-free next-generation sequencing via click ligation of adaptors to stochastically terminated 3'-Azido cDNAs. J Mol Biol, 2015; 427, 2610-6. doi:  10.1016/j.jmb.2015.06.011
[33] Victoria JG, Kapoor A, Dupuis K, et al. Rapid identification of known and new RNA viruses from animal tissues. PLos Pathog, 2008; 4, e1000163. doi:  10.1371/journal.ppat.1000163
[34] Chen Y, Cui D, Zheng S, et al. Simultaneous detection of influenza A, influenza B, and respiratory syncytial viruses and subtyping of influenza A H3N2 virus and H1N1 (2009) virus by multiplex real-time PCR. J Clin Microbiol, 2011; 49, 1653-6. doi:  10.1128/JCM.02184-10
[35] Cui A, Xu C, Tan X, et al. The development and application of the two real-time RT-PCR assays to detect the pathogen of HFMD. PLos One, 2013; 8, e61451. doi:  10.1371/journal.pone.0061451
[36] Markoulatos P, Georgopoulou A, Siafakas N, et al. Laboratory diagnosis of common herpesvirus infections of the central nervous system by a multiplex PCR assay. J Clin Microbiol, 2011; 12, 4426-32. https://www.researchgate.net/publication/11630681_Laboratory_Diagnosis_of_Common_Herpesvirus_Infections_of_the_Central_Nervous_System_by_a_Multiplex_PCR_Assay
[37] Victoria JG, Kapoor A, Li L, et al. Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol, 2009; 83, 4642-51. doi:  10.1128/JVI.02301-08
[38] Neill JD, Bayles DO, Ridpath JF. Simultaneous rapid sequencing of multiple RNA virus genomes. J Virol Methods, 2014; 201, 68-72. doi:  10.1016/j.jviromet.2014.02.016
[39] Li Y, Wang H, Nie K, et al. VIP:an integrated pipeline for metagenomics of virus identification and discovery. Sci Rep, 2016; 6, 23774. doi:  10.1038/srep23774
[40] Biagini P. Classification of TTV and related viruses (anelloviruses). Curr Top Microbiol Immunol, 2009; 331, 21-33. https://www.researchgate.net/publication/24028409_Classification_of_TTV_and_Related_Viruses_Anelloviruses
[41] Zhu C, Rong A, Yuan C, et al. Molecular detection of Torque teno mini virus (TTMV) in China. Virus Genes, 2012; 3, 403-7. https://www.researchgate.net/publication/221682759_Molecular_detection_of_Torque_teno_mini_virus_TTMV_in_China
[42] Hummel KB, Lowe L, Bellini WJ, et al. Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods, 2006; 132, 166-73. doi:  10.1016/j.jviromet.2005.10.006
[43] Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol, 2011; 28, 2731-9. doi:  10.1093/molbev/msr121
[44] Metzker ML. Sequencing technologies-the next generation. Nature reviews. Genetics, 2010; 11, 31-46. doi:  10.1038/nrg2626
[45] Shaukat S, Angez M, Alam MM, et al. Identification and characterization of unrecognized viruses in stool samples of non-polio acute flaccid paralysis children by simplified VIDISCA. Virol J, 2014; 11, 146. doi:  10.1186/1743-422X-11-146
[46] Briese T, Kapoor A, Mishra N, et al. Virome Capture Sequencing Enables Sensitive Viral Diagnosis and Comprehensive Virome Analysis. mBio 6, 2015; e01491-515. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4611031/
[47] Shao W, Boltz VF, Spindler JE, et al. Analysis of 454 sequencing error rate, error sources, and artifact recombination for detection of Low-frequency drug resistance mutations in HIV-1 DNA. Retrovirology, 2013; 10, 18. doi:  10.1186/1742-4690-10-18
[48] Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011; 27, 2194-200. doi:  10.1093/bioinformatics/btr381
[49] Yzèbe D, Xueref S, Baratin D, et al. TT virus. A review of the literature. Panminerva Med, 2002; 44, 167-77.
[50] Pifferi M, Maggi F, Andreoli E, et al. Associations between nasal torquetenovirus load and spirometric indices in children with asthma. J Infect Dis, 2005; 192, 1141-8. doi:  10.1086/jid.2005.192.issue-7
[51] Lysholm F, Wetterbom A, Lindau C, et al. Characterization of the viral microbiome in patients with severe lower respiratory tract infections, using metagenomic sequencing. PLos One, 2012; 7, e30875. doi:  10.1371/journal.pone.0030875
[52] Harvala H, Wiman Å, Wallensten A, et al. Role of Sequencing the Measles Virus Hemagglutinin Gene and Hypervariable Region in the Measles Outbreak Investigations in Sweden During 2013-2014. J Infect Dis, 2016; 4, 592-9.
[53] Prachayangprecha S, Schapendonk CM, Koopmans MP, et al. Exploring the potential of next-generation sequencing in detection of respiratory viruses. J Clin Microbiol, 2014; 52, 3722-30. doi:  10.1128/JCM.01641-14
[54] Rosseel T, Scheuch M, Höper D, et al. DNase SISPA-next generation sequencing confirms Schmallenberg virus in Belgian field samples and identifies genetic variation in Europe. PLos One, 2012; 7, e41967. doi:  10.1371/journal.pone.0041967
[55] Thorburn F, Bennett S, Modha S, et al. The use of next generation sequencing in the diagnosis and typing of respiratory infections. J Clin Virol, 2015; 69, 96-100. doi:  10.1016/j.jcv.2015.06.082
[56] Lecuit M, Eloit M. The diagnosis of infectious diseases by whole genome next generation sequencing:a new era is opening. Front. Cell Infect. Microbiol, 2014; 4, 25. https://www.researchgate.net/profile/Marc_Lecuit/publication/260876874_The_diagnosis_of_infectious_diseases_by_whole_genome_next_generation_sequencing_A_new_era_is_opening/links/5739917608ae9ace840d8232.pdf?origin=publication_list