[1] Schwarz F, Ramanauskaite A. It is all about peri-implant tissue health. Periodontol 2000, 2022; 88, 9−12. doi:  10.1111/prd.12407
[2] Wagner J, Spille JH, Wiltfang J, et al. Systematic review on diabetes mellitus and dental implants: an update. Int J Implant Dent, 2022; 8, 1. doi:  10.1186/s40729-021-00399-8
[3] Mohammadzadeh Rad M, Saber-Samandari S, Sadighi M, et al. Macro-and micromechanical modelling of HA-Elastin scaffold fabricated using freeze drying technique. J Nanoanalysis, 2021; 8, 17−31.
[4] Karlsson K, Derks J, Håkansson J, et al. Interventions for peri-implantitis and their effects on further bone loss: a retrospective analysis of a registry-based cohort. J Clin Periodontol, 2019; 46, 872−9. doi:  10.1111/jcpe.13129
[5] Lee RSB, Hamlet SM, Moon HJ, et al. Re-establishment of macrophage homeostasis by titanium surface modification in type II diabetes promotes osseous healing. Biomaterials, 2021; 267, 120464. doi:  10.1016/j.biomaterials.2020.120464
[6] Bagherifard A, Joneidi Yekta H, Akbari Aghdam H, et al. Improvement in osseointegration of tricalcium phosphate-zircon for orthopedic applications: an in vitro and in vivo evaluation. Med Biol Eng Comput, 2020; 58, 1681−93. doi:  10.1007/s11517-020-02157-1
[7] GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet, 2019; 393, 1958−72. doi:  10.1016/S0140-6736(19)30041-8
[8] Ma PP, Zha S, Shen XK, et al. NFAT5 mediates hypertonic stress-induced atherosclerosis via activating NLRP3 inflammasome in endothelium. Cell Commun Signal, 2019; 17, 102. doi:  10.1186/s12964-019-0406-7
[9] Wu L, Luthringer BJC, Feyerabend F, et al. Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men. Osteoporosis Int, 2017; 28, 3215−28. doi:  10.1007/s00198-017-4163-4
[10] Baldisserotto J, Padilha DMP, Amenábar JM. The influence of dietary salt on the osseointegration of implants in aging rats. Int Arch Otorhinolaryngol, 2019; 23, e427−32. doi:  10.1055/s-0039-1693141
[11] Farazin A, Akbari Aghdam H, Motififard M, et al. A polycaprolactone bio-nanocomposite bone substitute fabricated for femoral fracture approaches: molecular dynamic and micromechanical Investigation. J Nanoanalysis, 2019; 6, 172−84.
[12] Aghdam HA, Sanatizadeh E, Motififard M, et al. Effect of calcium silicate nanoparticle on surface feature of calcium phosphates hybrid bio-nanocomposite using for bone substitute application. Powder Technol, 2020; 361, 917−29. doi:  10.1016/j.powtec.2019.10.111
[13] Tiyasatkulkovit W, Aksornthong S, Adulyaritthikul P, et al. Excessive salt consumption causes systemic calcium mishandling and worsens microarchitecture and strength of long bones in rats. Sci Rep, 2021; 11, 1850. doi:  10.1038/s41598-021-81413-2
[14] Schröder A, Gubernator J, Leikam A, et al. Dietary salt accelerates orthodontic tooth movement by increased osteoclast activity. Int J Mol Sci, 2021; 22, 596. doi:  10.3390/ijms22020596
[15] Khandan A, Nassireslami E, Saber-Samandari S, et al. Fabrication and characterization of porous bioceramic-magnetite biocomposite for maxillofacial fractures application. Dent Hypotheses, 2020; 11, 74−85. doi:  10.4103/denthyp.denthyp_11_20
[16] Zhao YF, Xie L. Unique bone marrow blood vessels couple angiogenesis and osteogenesis in bone homeostasis and diseases. Ann N Y Acad Sci, 2020; 1474, 5−14. doi:  10.1111/nyas.14348
[17] Zeng YW, Huang C, Duan DM, et al. Injectable temperature-sensitive hydrogel system incorporating deferoxamine-loaded microspheres promotes H-type blood vessel-related bone repair of a critical size femoral defect. Acta Biomater, 2022; 153, 108−23. doi:  10.1016/j.actbio.2022.09.018
[18] Tang Y, Hu MJ, Xu Y, et al. Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-β1. Theranostics, 2020; 10, 2229−42. doi:  10.7150/thno.40559
[19] Hu XF, Xiang G, Wang TJ, et al. Impairment of type H vessels by NOX2-mediated endothelial oxidative stress: critical mechanisms and therapeutic targets for bone fragility in streptozotocin-induced type 1 diabetic mice. Theranostics, 2021; 11, 3796−812. doi:  10.7150/thno.50907
[20] Qin QZ, Lee S, Patel N, et al. Neurovascular coupling in bone regeneration. Exp Mol Med, 2022; 54, 1844−9. doi:  10.1038/s12276-022-00899-6
[21] Ramasamy SK, Kusumbe AP, Schiller M, et al. Blood flow controls bone vascular function and osteogenesis. Nat Commun, 2016; 7, 13601. doi:  10.1038/ncomms13601
[22] Vuornos K, Huhtala H, Kääriäinen M, et al. Bioactive glass ions for in vitro osteogenesis and microvascularization in gellan gum-collagen hydrogels. J Biomed Mater Res Part B Appl Biomater, 2020; 108, 1332−42. doi:  10.1002/jbm.b.34482
[23] Chen WZ, Xu K, Tao BL, et al. Multilayered coating of titanium implants promotes coupled osteogenesis and angiogenesis in vitro and in vivo. Acta Biomater, 2018; 74, 489−504. doi:  10.1016/j.actbio.2018.04.043
[24] Rath SN, Arkudas A, Lam CX, et al. Development of a pre-vascularized 3D scaffold-hydrogel composite graft using an arterio-venous loop for tissue engineering applications. J Biomater Appl, 2012; 27, 277−89. doi:  10.1177/0885328211402243
[25] Tuckermann J, Adams RH. The endothelium-bone axis in development, homeostasis and bone and joint disease. Nat Rev Rheumatol, 2021; 17, 608−20. doi:  10.1038/s41584-021-00682-3
[26] Lee EJ, Jain M, Alimperti S. Bone microvasculature: stimulus for tissue function and regeneration. Tissue Eng Part B:Rev, 2021; 27, 313−29. doi:  10.1089/ten.teb.2020.0154
[27] Burger MG, Grosso A, Briquez PS, et al. Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomater, 2022; 149, 111−25. doi:  10.1016/j.actbio.2022.07.014
[28] Neal B, Wu YF, Feng XX, et al. Effect of salt substitution on cardiovascular events and death. N Engl J Med, 2021; 385, 1067−77. doi:  10.1056/NEJMoa2105675
[29] Zeng C, Rosenberg L, Li XX, et al. Sodium-containing acetaminophen and cardiovascular outcomes in individuals with and without hypertension. Eur Heart J, 2022; 43, 1743−55. doi:  10.1093/eurheartj/ehac059
[30] Ying KE, Feng WG, Ying WZ, et al. Dietary salt initiates redox signaling between endothelium and vascular smooth muscle through NADPH oxidase 4. Redox Biol, 2022; 52, 102296. doi:  10.1016/j.redox.2022.102296
[31] Cao Y, Yuan GH, Zhang Y, et al. High glucose-induced circHIPK3 downregulation mediates endothelial cell injury. Biochem Biophys Res Commun, 2018; 507, 362−8. doi:  10.1016/j.bbrc.2018.11.041
[32] Torres BM, Leal MAS, Brun BF, et al. Effects of direct high sodium exposure at endothelial cell migration. Biochem Biophys Res Commun, 2019; 514, 1257−63. doi:  10.1016/j.bbrc.2019.05.103
[33] Fu H, Chen JK, Lu WJ, et al. Inflammasome-independent NALP3 contributes to high-salt induced endothelial dysfunction. Front Pharmacol, 2018; 9, 968. doi:  10.3389/fphar.2018.00968
[34] Paddenberg E, Krenmayr B, Jantsch J, et al. Dietary salt and myeloid NFAT5 (nuclear factor of activated T cells 5) impact on the number of bone-remodelling cells and frequency of root resorption during orthodontic tooth movement. Ann Anat, 2022; 244, 151979. doi:  10.1016/j.aanat.2022.151979
[35] van der Wijst J, Tutakhel OAZ, Bos C, et al. Effects of a high-sodium/low-potassium diet on renal calcium, magnesium, and phosphate handling. Am J Physiol Renal Physiol, 2018; 315, F110−22. doi:  10.1152/ajprenal.00379.2017
[36] Müller DN, Wilck N, Haase S, et al. Sodium in the microenvironment regulates immune responses and tissue homeostasis. Nat Rev Immunol, 2019; 19, 243−54. doi:  10.1038/s41577-018-0113-4
[37] Geisberger S, Bartolomaeus H, Neubert P, et al. Salt transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation, 2021; 144, 144−58. doi:  10.1161/CIRCULATIONAHA.120.052788
[38] Mo S, Cui Y, Sun KH, et al. High sodium chloride affects BMP-7 and 1α-hydroxylase levels through NCC and CLC-5 in NRK-52E cells. Ecotoxicol Environ Saf, 2021; 225, 112762. doi:  10.1016/j.ecoenv.2021.112762
[39] Gao P, You M, Li L, et al. Salt-induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation, 2022; 145, 375−91. doi:  10.1161/CIRCULATIONAHA.121.055600
[40] Xiao HR, Yan YL, Gu YP, et al. Strategy for sodium-salt substitution: on the relationship between hypertension and dietary intake of cations. Food Res Int, 2022; 156, 110822. doi:  10.1016/j.foodres.2021.110822
[41] Rizvi ZA, Dalal R, Sadhu S, et al. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv, 2021; 7, eabg5016. doi:  10.1126/sciadv.abg5016
[42] Wu L, Luthringer BJC, Feyerabend F, et al. Increased levels of sodium chloride directly increase osteoclastic differentiation and resorption in mice and men. Osteoporosis Int, 2017; 28, 3215-28. (查阅网上资料, 本条文献与第9条文献重复, 请确认)
[43] Jobin K, Müller DN, Jantsch J, et al. Sodium and its manifold impact on our immune system. Trends Immunol, 2021; 42, 469−79. doi:  10.1016/j.it.2021.04.002
[44] Khandan A, Abdellahi M, Ozada N, et al. Study of the bioactivity, wettability and hardness behaviour of the bovine hydroxyapatite-diopside bio-nanocomposite coating. J Taiwan Inst Chem Eng, 2016; 60, 538−46. doi:  10.1016/j.jtice.2015.10.004
[45] Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration. Periodontol 2000, 2019; 79, 178−89. doi:  10.1111/prd.12254
[46] Marx RE, Carlson ER, Eichstaedt RM, et al. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol, 1998; 85, 638−46. doi:  10.1016/S1079-2104(98)90029-4
[47] Kim ES, Park EJ, Choung PH. Platelet concentration and its effect on bone formation in calvarial defects: an experimental study in rabbits. J Prosthet Dent, 2001; 86, 428−33. doi:  10.1067/mpr.2001.115874
[48] Clark RAF. Fibrin and wound healing. Ann N Y Acad Sci, 2001; 936, 355−67. doi:  10.1111/j.1749-6632.2001.tb03522.x
[49] Norrdin RW, Jee WSS, High WB. The role of prostaglandins in bone in vivo. Prostaglandins, Leukot Essent Fatty Acids, 1990; 41, 139−49. doi:  10.1016/0952-3278(90)90081-U
[50] Simon AM, Manigrasso MB, O’Connor JP. Cyclooxygenase 2 function is essential for bone fracture healing. J Bone Miner Res, 2002; 17, 963−76. doi:  10.1359/jbmr.2002.17.6.963
[51] Cheng H, Huang HY, Guo ZK, et al. Role of prostaglandin E2 in tissue repair and regeneration. Theranostics, 2021; 11, 8836−54. doi:  10.7150/thno.63396
[52] Geusens P, Emans PJ, de Jong JJA, et al. NSAIDs and fracture healing. Curr Opin Rheumatol, 2013; 25, 524−31. doi:  10.1097/BOR.0b013e32836200b8
[53] Lisowska B, Kosson D, Domaracka K. Lights and shadows of NSAIDs in bone healing: the role of prostaglandins in bone metabolism. Drug Des Devel Ther, 2018; 12, 1753−8. doi:  10.2147/DDDT.S164562
[54] Ripamonti U, Roden LC, Renton LF. Osteoinductive hydroxyapatite-coated titanium implants. Biomaterials, 2012; 33, 3813−23. doi:  10.1016/j.biomaterials.2012.01.050
[55] Sun C, Dai XL, Zhao DL, et al. Mesenchymal stem cells promote glioma neovascularization in vivo by fusing with cancer stem cells. BMC Cancer, 2019; 19, 1240. doi:  10.1186/s12885-019-6460-0
[56] Inoue T, Sata M, Hikichi Y, et al. Mobilization of CD34-positive bone marrow-derived cells after coronary stent implantation: impact on restenosis. Circulation, 2007; 115, 553−61. doi:  10.1161/CIRCULATIONAHA.106.621714
[57] Mente A, O'Donnell M, Yusuf S. Sodium intake and health: what should we recommend based on the current evidence? Nutrients, 2021; 13, 3232.
[58] Cui Y, Sun KH, Xiao YW, et al. High-salt diet accelerates bone loss accompanied by activation of ion channels related to kidney and bone tissue in ovariectomized rats. Ecotoxicol Environ Saf, 2022; 244, 114024. doi:  10.1016/j.ecoenv.2022.114024
[59] Liu ZY, Li SK, Huang CK, et al. A high-sodium diet modulates the immune response of food allergy in a murine model. Nutrients, 2021; 13, 3684. doi:  10.3390/nu13113684
[60] Amersfoort J, Eelen G, Carmeliet P. Immunomodulation by endothelial cells - partnering up with the immune system? Nat Rev Immunol, 2022; 22, 576-88.
[61] Zarubova J, Hasani-Sadrabadi MM, Ardehali R, et al. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev, 2022; 184, 114233. doi:  10.1016/j.addr.2022.114233
[62] Lee MKS, Murphy AJ. A high-salt diet promotes atherosclerosis by altering haematopoiesis. Nat Rev Cardiol, 2023; 20, 435−6. doi:  10.1038/s41569-023-00879-x
[63] Zhang LP, Yang Y, Aroor AR, et al. Endothelial sodium channel activation mediates DOCA-salt-induced endothelial cell and arterial stiffening. Metabolism, 2022; 130, 155165. doi:  10.1016/j.metabol.2022.155165
[64] Ma PP, Li G, Jiang XR, et al. NFAT5 directs hyperosmotic stress-induced fibrin deposition and macrophage infiltration via PAI-1 in endothelium. Aging (Albany NY), 2020; 13, 3661−79.