[1] Han Z, An W, Yang M, et al. Assessing the impact of source water on tap water bacterial communities in 46 drinking water supply systems in China. Water Res, 2020; 172, 115469. doi:  10.1016/j.watres.2020.115469
[2] Primm TP, Lucero CA, Falkinham JO. Health impacts of environmental mycobacteria. Clin Microbiol Rev, 2004; 17, 98−106. doi:  10.1128/CMR.17.1.98-106.2004
[3] Tortoli E. Mycobacterium kansasii, species or complex? Biomolecular and epidemiological insights. Kekkaku, 2003; 78, 705−9.
[4] Totaro M, Casini B, Valentini P, et al. Assessing natural mineral water microbiology quality in the absence of cultivable pathogen bacteria. J Water Health, 2018; 16, 425−34.
[5] Atlas RM. Legionella: from environmental habitats to disease pathology, detection and control. Environ Microbiol, 1999; 1, 283−93. doi:  10.1046/j.1462-2920.1999.00046.x
[6] Wang H, Xu J, Tang W, et al. Removal efficacy of opportunistic pathogens and bacterial community dynamics in two drinking water treatment trains. Small, 2019; 15, 1804436.
[7] Whiley H, Keegan A, Fallowfield H, et al. Detection of Legionella, L. pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines. Int J Environ Res Public Health, 2014; 11, 11418−20. doi:  10.3390/ijerph111111418
[8] Fisher I, Kastl G, Sathasivan A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res, 2011; 45, 4896−908. doi:  10.1016/j.watres.2011.06.032
[9] Fish KE, Osborn AM, Boxall J. Characterising and understanding the impact of microbial biofilms and the extracellular polymeric substance (EPS) matrix in drinking water distribution systems. Environ Sci Water Res Technol, 2016; 2, 614−30. doi:  10.1039/C6EW00039H
[10] Lee WH, Wahman DG, Bishop PL, et al. Free chlorine and monochloramine application to nitrifying biofilm: comparison of biofilm penetration, activity, and viability. Environ Sci Technol, 2011; 45, 1412−9. doi:  10.1021/es1035305
[11] Environmental Protection Agency (EPA). Contaminant information sheets (CISs) for the final fourth contaminant candidate List (CCL 4). Office of Water (4607M), 2016; EPA 815-R-16-003.
[12] Garrison LE, Kunz JM, Cooley LA, et al. Deficiencies in environmental control identified in outbreaks of Legionnaires' disease-North America, 2000-2014. MMWR-Morbid Mortal W, 2016; 65, 576−84. doi:  10.15585/mmwr.mm6522e1
[13] Soda EA, Barskey AE, Shah PP, et al. Health care-associated Legionnaires' disease surveillance data from 20 states and a large metropolitan area-United States, 2015. MMWR-Morbid Mortal W, 2017; 66, 584−91. doi:  10.15585/mmwr.mm6622e1
[14] Kanamori H, Weber DJ, Rutala WA. Healthcare outbreaks associated with a water reservoir and infection prevention strategies. Clin Infect Dis, 2016; 62, 1423−35. doi:  10.1093/cid/ciw122
[15] Montagna MT, De Giglio O, Cristina ML, et al. Evaluation of Legionella air contamination in healthcare facilities by different sampling methods: an Italian multicenter study. Int J Environ Res Public Health, 2017; 14, 670. doi:  10.3390/ijerph14070670
[16] Napoli C, Fasano F, Iatta R, et al. Legionella spp. and legionellosis in south eastern Italy: disease epidemiology and environmental surveillance in community and healthcare facilities. BMC Public Health, 2010; 10, 660. doi:  10.1186/1471-2458-10-660
[17] Kozak-Muiznieks NA, Lucas CE, Brown E, et al. Prevalence of sequence types among clinical and environmental isolates of Legionella pneumophila serogroup 1 in the United States from 1982 to 2012. J Clin Microbiol, 2014; 52, 201−11. doi:  10.1128/JCM.01973-13
[18] Takajo I, Iwao C, Aratake M, et al. Pseudo-outbreak of Mycobacterium paragordonae in a hospital: possible role of the aerator/rectifier connected to the faucet of the water supply system. J Hosp Infect, 2019.
[19] Wang H, Edwards M, Falkinham JO 3rd, et al. Molecular survey of the occurrence of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa, and amoeba hosts in two chloraminated drinking water distribution systems. Appl Environ Microbiol, 2012; 78, 6285−94. doi:  10.1128/AEM.01492-12
[20] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 2014; 30, 2114−20. doi:  10.1093/bioinformatics/btu170
[21] Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 2011; 27, 2957−63. doi:  10.1093/bioinformatics/btr507
[22] Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 2011; 27, 2194−200. doi:  10.1093/bioinformatics/btr381
[23] Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013; 10, 996−8. doi:  10.1038/nmeth.2604
[24] DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microb, 2006; 72, 5069−72. doi:  10.1128/AEM.03006-05
[25] Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microb, 2013; 79, 5112−20. doi:  10.1128/AEM.01043-13
[26] Reshef DN, Reshef YA, Finucane HK, et al. Detecting novel associations in large data sets. Science, 2011; 334, 1518−24. doi:  10.1126/science.1205438
[27] Albanese D, Riccadonna S, Donati C, et al. A practical tool for maximal information coeffcient analysis. GigaScience, 2018; 7, giy032.
[28] Falkinham JO 3rd, Pruden A, Edwards M. Opportunistic premise plumbing pathogens: increasingly important pathogens in drinking water. Pathogens, 2015; 4, 373−86. doi:  10.3390/pathogens4020373
[29] Feazel LM, Baumgartner LK, Peterson KL, et al. Opportunistic pathogens enriched in showerhead biofilms. Proc Natl Acad Sci USA, 2009; 106, 16393−8. doi:  10.1073/pnas.0908446106
[30] Ji P, Rhoads WJ, Edwards MA, et al. Impact of water heater temperature setting and water use frequency on the building plumbing microbiome. ISME J, 2017; 11, 1318−30. doi:  10.1038/ismej.2017.14
[31] Lesnik R, Brettar I, Hofle MG. Legionella species diversity and dynamics from surface reservoir to tap water: from cold adaptation to thermophily. ISME J, 2016; 10, 1064−80. doi:  10.1038/ismej.2015.199
[32] Lu J, Struewing I, Yelton S, et al. Molecular survey of occurrence and quantity of Legionella spp., Mycobacterium spp., Pseudomonas aeruginosa and amoeba hosts in municipal drinking water storage tank sediments. J Appl Microbiol, 2015; 119, 278−88. doi:  10.1111/jam.12831
[33] Wang H, Proctor CR, Edwards MA, et al. Microbial community response to chlorine conversion in a chloraminated drinking water distribution system. Environ Sci Technol, 2014; 48, 10624−33. doi:  10.1021/es502646d
[34] Dovriki E, Gerogianni I, Petinaki E, et al. Isolation and identification of nontuberculous mycobacteria from hospitalized patients and drinking water samples-examination of their correlation by chemometrics. Environ Monit Assess, 2016; 188, 247. doi:  10.1007/s10661-016-5258-7
[35] Li Q, Yu S, Li L, et al. Microbial communities shaped by treatment processes in a drinking water treatment plant and their contribution and threat to drinking water safety. Front Microbiol, 2017; 8, 2465. doi:  10.3389/fmicb.2017.02465
[36] Liu L, Xing X, Hu C, et al. One-year survey of opportunistic premise plumbing pathogens and free-living amoebae in the tap-water of one northern city of China. J Environ Sci-China, 2019; 77, 20−3. doi:  10.1016/j.jes.2018.04.020
[37] Borella P, Bargellini A, Marchegiano P, et al. Hospital-acquired Legionella infections: an update on the procedures for controlling environmental contamination. Ann Ig, 2016; 28, 98−108.
[38] Marchesi I, Ferranti G, Mansi A, et al. Control of Legionella contamination and risk of corrosion in hospital water networks following various disinfection procedures. Appl Environ Microb, 2016; 82, 2959−65. doi:  10.1128/AEM.03873-15
[39] Wu J, Zhang Y, Li J, et al. Increase in nontuberculous mycobacteria isolated in shanghai, China: results from a population-based study. PloS One, 2014; 9, e109736. doi:  10.1371/journal.pone.0109736
[40] Towhid ST. Microbial interaction as a determinant of the quality of supply drinking water: a conceptual analysis. Front Public Health, 2018; 6, 184. doi:  10.3389/fpubh.2018.00184
[41] Li H, Li S, Tang W, et al. Influence of secondary water supply systems on microbial community structure and opportunistic pathogen gene markers. Water Res, 2018; 136, 160−8. doi:  10.1016/j.watres.2018.02.031
[42] Luptakova A. Importance of sulphate-reducing bacteria in environment. Nova Biotechnol, 2007; 7, 17−22.
[43] El-Shanshoury AE-RR, Abo-Amer AE, Alzahrani OM. Isolation of Bdellovibrio sp. from wastewater and their potential application in control of Salmonella paratyphi in water. Geomicrobiol J, 2016; 33, 886−93. doi:  10.1080/01490451.2015.1127297
[44] Pressman JG, McCurry DL, Parvez S, et al. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source. Water Res, 2012; 46, 5343−54. doi:  10.1016/j.watres.2012.07.020
[45] Springston JP, Yocavitch L. Existence and control of Legionella bacteria in building water systems: a review. J Occup Environ Hyg, 14, 2017; 124−34.
[46] Lee WH, Pressman JG, Wahman DG, et al. Characterization and application of a chlorine microelectrode for measuring monochloramine within a biofilm. Sensor. Actuat B-Chem, 2010; 145, 734−42. doi:  10.1016/j.snb.2010.01.025
[47] Garner E, Inyang M, Garvey E, et al. Impact of blending for direct potable reuse on premise plumbing microbial ecology and regrowth of opportunistic pathogens and antibiotic resistant bacteria. Water Res, 2018; 151, 75−86.
[48] Donohue MJ, Mistry JH, Donohue JM, et al. Increased frequency of nontuberculous mycobacteria detection at potable water taps within the United States. Environ Sci Technol, 2015; 49, 6127−33. doi:  10.1021/acs.est.5b00496
[49] Falkinham JO 3rd. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol, 2009; 107, 356−67. doi:  10.1111/j.1365-2672.2009.04161.x
[50] Stahl DA, Urbance JW. The division between fast-growing and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol, 1990; 172, 116−24. doi:  10.1128/JB.172.1.116-124.1990
[51] Dailloux M, Laurain C, Weber R, et al. Water and nontuberculous mycobacteria. Water Res, 1999; 33, 2219−28. doi:  10.1016/S0043-1354(98)00466-7
[52] Coniglio MA, Ferrante M, Yassin MH. Preventing healthcare-associated legionellosis: results after 3 years of continuous disinfection of hot water with monochloramine and an effective water safety plan. Int J Environ Res Public Health, 2018; 15, 1594. doi:  10.3390/ijerph15081594
[53] American Society of Heating, Refrigeration, and Air Conditioning Engineering (ASHRAE). ASHRAE standard project committee 188: prevention of legionellosis associated with building water systems. ASHRAE, Atlanta, GA, 2013.
[54] Bichai F, Payment P, Barbeau B. Protection of waterborne pathogens by higher organisms in drinking water: a review. Can J Microbiol, 2008; 54, 509−24. doi:  10.1139/W08-039
[55] Livni G, Yaniv I, Samra Z, et al. Outbreak of Mycobacterium mucogenicum bacteraemia due to contaminated water supply in a paediatric haematology-oncology department. J Hosp Infect, 2008; 70, 253−8. doi:  10.1016/j.jhin.2008.07.016
[56] Berthelot P, Loulergue P, Raberin H, et al. Efficacy of environmental measures to decrease the risk of hospital-acquired aspergillosis in patients hospitalised in haematology wards. Clin Microbiol Infect, 2006; 12, 738−44. doi:  10.1111/j.1469-0691.2006.01499.x
[57] Halabi M, Wiesholzer-Pittl M, Schoberl J, et al. Non-touch fittings in hospitals: a possible source of Pseudomonas aeruginosa and Legionella spp. J Hosp Infect, 2001; 49, 117−21. doi:  10.1053/jhin.2001.1060
[58] Sydnor ERM, Bova G, Gimburg A, et al. Electronic-eye faucets: Legionella species contamination in healthcare settings. Infect Cont Hosp Ep, 2012; 33, 235−40. doi:  10.1086/664047
[59] Gomez-Alvarez V, Schrantz KA, Pressman JG, et al. Biofilm community dynamics in bench-scale annular reactors simulating arrestment of chloraminated drinking water nitrification. Environ Sci Technol, 2014; 48, 5448−57. doi:  10.1021/es5005208
[60] Zhanga B, Qiu R, Lu L, et al. Autotrophic vanadium(V) bioreduction in groundwater by elemental sulfur and zerovalent Iron. Environ Sci Technol, 2018; 52, 7434−42. doi:  10.1021/acs.est.8b01317
[61] Zhanga B, Wang S, Diao M, et al. Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment. J Geophys Res-Biogeosci, 2019; 124, 601−15. doi:  10.1029/2018JG004670
[62] Zhanga B, Chenga Y, Shi J, et al. Insights into interactions between vanadium (V) bio-reduction and pentachlorophenol dechlorination in synthetic groundwater. Chem Eng J, 2019; 375, 121965. doi:  10.1016/j.cej.2019.121965
[63] Vaz-Moreira I, Nunes OC, Manaia CM. Ubiquitous and persistent proteobacteria and other gram-negative bacteria in drinking water. Sci Total Environ, 2017; 586, 1141−9. doi:  10.1016/j.scitotenv.2017.02.104
[64] Fujita J, Nanki N, Negayama K, et al. Nosocomial contamination by Mycobacterium gordonae in hospital water supply and super-oxidized water. J Hosp Infect, 2002; 51, 65−8. doi:  10.1053/jhin.2002.1197
[65] Falkinham Ⅲ JO, Hilborn ED, Arduino MJ, et al. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Persp, 2015; 123, 749−58. doi:  10.1289/ehp.1408692
[66] Charron D, Bedard E, Lalancette C, et al. Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study. Infect Control Hosp Epidemiol, 2015; 36, 311−9. doi:  10.1017/ice.2014.46