[1] Nucci M, Queiroztelles F, Alvaradomatute T, et al. Epidemiology of Candidemia in Latin America: A Laboratory-Based Survey. PLoS One, 2013; 8, e59373. doi:  10.1371/journal.pone.0059373
[2] Pfaller M, Diekema D. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev, 2007; 20, 133-63. doi:  10.1128/CMR.00029-06
[3] Pfaller MA, Moet GJ, Messer SA, et al. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the sentry antimicrobial surveillance program (2008 to 2009). J Clin Microbiol, 2011; 49, 396-9. doi:  10.1128/JCM.01398-10
[4] Matsubara VH, Wang Y, Bandara H, et al. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation. Appl Microbiol Biotechnol, 2016; 100, 6415-26. doi:  10.1007/s00253-016-7527-3
[5] López-Martínez R. Candidosis, a new challenge. Clin Dermatol, 2010; 28, 178-84. doi:  10.1016/j.clindermatol.2009.12.014
[6] Akins RA, Sobel JD. Antifungal Targets, Mechanisms of Action, and Resistance in Candida albicans. Antimicrobial Drug Resistance, 2017; 429-75. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_434226
[7] Del Sorbo G, Schoonbeek HJ, De Waard MA. Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol, 2000; 30, 1-15. doi:  10.1006/fgbi.2000.1206
[8] Lohberger A, Coste AT, Sanglard D. Distinct roles of Candida albicans drug resistance transcription factors TAC1, MRR1, and UPC2 in virulence. Eukaryot Cell, 2014; 13, 127-42. doi:  10.1128/EC.00245-13
[9] Dib L, Hayek P, Sadek H, et al. The Candida albicans Ddr48 protein is essential for filamentation, stress response, and confers partial antifungal drug resistance. Med Sci Monit, 2008; 14, Br113-21. http://europepmc.org/abstract/MED/18509269
[10] Heimark L, Shipkova P, Greene J, et al. Mechanism of azole antifungal activity as determined by liquid chromatographic/mass spectrometric monitoring of ergosterol biosynthesis. J Mass Spectrom, 2002; 37, 265-9. doi:  10.1002/(ISSN)1096-9888
[11] Hoot SJ, Oliver BG, White TC. Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and-independent mechanisms. Microbiology, 2008; 154, 2748-56. doi:  10.1099/mic.0.2008/017475-0
[12] Znaidi S, Weber S, Al-Abdin OZ, et al. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot Cell, 2008; 7, 836-47. doi:  10.1128/EC.00070-08
[13] Denning D. Can we prevent azole resistance in fungi? The Lancet, 1995; 346, 454-5. doi:  10.1016/S0140-6736(95)91314-9
[14] Ejim L, Farha MA, Falconer SB, et al. Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol, 2011; 7, 348. doi:  10.1038/nchembio.559
[15] Butts A, Krysan DJ. Antifungal drug discovery: something old and something new. PLoS Pathog, 2012; 8, e1002870. doi:  10.1371/journal.ppat.1002870
[16] Li DD, Xu Y, Zhang DZ, et al. Fluconazole assists berberine to kill fluconazole-resistant Candida albicans. Antimicrob Agents Chemother, 2013; 57, 6016-27. doi:  10.1128/AAC.00499-13
[17] Mukherjee PK, Sheehan DJ, Hitchcock CA, et al. Combination treatment of invasive fungal infections. Clin Microbiol Rev, 2005; 18, 163-94. doi:  10.1128/CMR.18.1.163-194.2005
[18] Kabir MA, Ahmad Z. Candida infections and their prevention. ISRN preventive medicine, 2012; 763628. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0224552248/
[19] Azevedo MM, Teixeira-Santos R, Silva AP, et al. The effect of antibacterial and non-antibacterial compounds alone or associated with antifugals upon fungi. Front Microbiol, 2015; 6, 669. http://pubmedcentralcanada.ca/pmcc/articles/PMC4490243/
[20] Guo Q, Sun S, Yu J, et al. Synergistic activity of azoles with amiodarone against clinically resistant Candida albicans tested by chequerboard and time–kill methods. J Med Microbiol, 2008; 57, 457-62. doi:  10.1099/jmm.0.47651-0
[21] Gao Y, Li H, Liu S, et al. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression. J Med Microbiol, 2014; 63, 956-61. doi:  10.1099/jmm.0.072421-0
[22] Li Y, Wan Z, Liu W, et al. Synergistic activity of chloroquine with fluconazole against fluconazole-resistant isolates of Candida species. Antimicrob Agents Chemother, 2015; 59, 1365-9. doi:  10.1128/AAC.04417-14
[23] Liu S, Hou Y, Chen X, et al. Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Agents, 2014; 43, 395-402. doi:  10.1016/j.ijantimicag.2013.12.009
[24] Zhao F, Dong HH, Wang YH, et al. Synthesis and synergistic antifungal effects of monoketone derivatives of curcumin against fluconazole-resistant Candida spp. Medchemcomm, 2017; 8, 1093-102. doi:  10.1039/C6MD00649C
[25] P Tegos G, Haynes M, Jacob Strouse J, et al. Microbial efflux pump inhibition: tactics and strategies. Curr Pharm Des, 2011; 17, 1291-302. doi:  10.2174/138161211795703726
[26] Nagayoshi Y, Miyazaki T, Shimamura S, et al. Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species. PLoS One, 2017; 12, e0180990. doi:  10.1371/journal.pone.0180990
[27] Xia J, Fang Q, Xu W, et al. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling, 2017; 33, 283-93. doi:  10.1080/08927014.2017.1295304
[28] Willers C, Wentzel JF, Du PL, et al. Efflux as a mechanism of antimicrobial drug resistance in clinical relevant microorganisms: the role of efflux inhibitors. Expert Opin Ther Targets, 2017; 21, 23. doi:  10.1080/14728222.2017.1265105
[29] Boon C, Deng Y, Wang LH, et al. A novel DSF-like signal from Burkholderia cenocepacia interferes with Candida albicans morphological transition. ISME J, 2008; 2, 27. doi:  10.1038/ismej.2007.76
[30] Wang LH, Zhang LH. Inhibitors of yeast filamentous growth and method of their manufacture. United States Patent No. US7915313B2, 2014.
[31] Zhang Y, Cai C, Yang Y, et al. Blocking of Candida albicans biofilm formation by cis-2-dodecenoic acid and trans-2-dodecenoic acid. J Med Microbiol, 2011; 60, 1643-50. doi:  10.1099/jmm.0.029058-0
[32] Xu ZH, Liao Y, Li M, et al. Inhibitory effect of BDSF on hyphal growth of clinical Candida albicans. J Microbes Infect, 2015; 10, 247-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gwyx-wswxfc201504010
[33] M27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard, Third Edition. Clinical and Laboratory Standards Institute. In Wayne, PA, USA; 2008.
[34] Chen SC, O'donnell ML, Gordon S, et al. Antifungal susceptibility testing using the E test: comparison with the broth macrodilution technique. J Antimicrob Chemoth, 1996; 37, 265-73. doi:  10.1093/jac/37.2.265
[35] Jin J, Guo N, Zhang J, et al. The synergy of honokiol and fluconazole against clinical isolates of azole‐resistant Candida albicans. Lett Appl Microbiol, 2010; 51, 351-7. doi:  10.1111/lam.2010.51.issue-3
[36] Yang D, Zhang Y, Hu Y, et al. Protective effects of cis-2-dodecenoic acid in an experimental mouse model of vaginal candidiasis. Biomed Environ Sci, 2018; 31, 816-28. http://d.old.wanfangdata.com.cn/Periodical/bes201811004
[37] Lee SH, Jeon JE, Ahn CH, et al. Inhibition of yeast-to-hypha transition in Candida albicans by phorbasin H isolated from Phorbas sp. Appl Microbiol Biotechnol, 2013; 97, 3141-8. doi:  10.1007/s00253-012-4549-3
[38] Cannon RD, Lamping E, Holmes AR, et al. Efflux-mediated antifungal drug resistance. Clin Microbiol Rev, 2009; 22, 291-321. doi:  10.1128/CMR.00051-08
[39] Coste AT, Karababa M, Ischer F, et al. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell, 2004; 3, 1639-52. doi:  10.1128/EC.3.6.1639-1652.2004
[40] Morschhäuser J, Barker KS, Liu TT, et al. The transcription factor Mrr1p controls expression of the MDR1 efflux pump and mediates multidrug resistance in Candida albicans. PLoS Pathog, 2007; 3, e164. doi:  10.1371/journal.ppat.0030164
[41] Sharma M, Prasad R. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Ch, 2011; 55, 4834-43. doi:  10.1128/AAC.00344-11
[42] Ahmad A, Khan A, Manzoor N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur J Phar Sc, 2013; 48, 80-6. doi:  10.1016/j.ejps.2012.09.016
[43] Simopoulos AP. Essential fatty acids in health and chronic disease. Am J Clin Nutr, 1999; 70, 560S-9S. doi:  10.1093/ajcn/70.3.560s