[1] Israel M, Vangelova K, Ivanova M. Cardiovascular risk under electromagnetic exposure in physiotherapy. Environmentalist, 2007; 27, 539-43. doi:  10.1007/s10669-007-9065-0
[2] Altpeter ES, Roosli M, Battaglia M, et al. Effect of short-wave (6-22 MHz) magnetic fields on sleep quality and melatonin cycle in humans:the Schwarzenburg shut-down study. Bioelectromagnetics, 2006; 27, 142-50. doi:  10.1002/(ISSN)1521-186X
[3] Narayanan SN, Kumar RS, Karun KM, et al. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation. Metab Brain Dis, 2015; 30, 1193-206. doi:  10.1007/s11011-015-9689-6
[4] Deshmukh PS, Megha K, Nasare N, et al. Effect of low level subchronic microwave radiation on rat brain. Biomed Environ Sci, 2016; 29, 858-67. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bes201612002
[5] Wang H, Peng RY, Zhao L, et al. The relationship between NMDA receptors and microwave-induced learning and memory impairment:A long-term observation on Wistar rats. Int J Radiat Biol, 2015; 91, 262-9. doi:  10.3109/09553002.2014.988893
[6] Hussein S, El-Saba AA, Galal MK. Biochemical and histological studies on adverse effects of mobile phone radiation on rat's brain. J Chem Neuroanat, 2016; 78, 10-9. doi:  10.1016/j.jchemneu.2016.07.009
[7] Chauhan P, Verma H, Sisodia R, et al. Microwave radiation (2.45 GHz)-induced oxidative stress:Whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med, 2017; 36, 20-30. http://www.ncbi.nlm.nih.gov/pubmed/27362544
[8] Li HJ, Peng RY, Wang CZ, et al. Alterations of cognitive function and 5-HT system in rats after long term microwave exposure. Physiol Behav, 2015; 140, 236-46. doi:  10.1016/j.physbeh.2014.12.039
[9] Gökçek-Saraç Ç, Er H, Kencebay MC, et al. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol, 2017; 93, 980-9. doi:  10.1080/09553002.2017.1337279
[10] Zuo HY, Lin T, Wang DW, et al. RKIP regulates neural cell apoptosis induced by exposure to microwave radiation partly through the MEK/ERK/CREB pathway. Mol Neurobiol, 2015; 51, 1520-9. doi:  10.1007/s12035-014-8831-5
[11] Kida S, Serita T. Functional roles of CREB as a positive regulator in the formation and enhancement of memory. Brain Res Bull, 2014; 105, 17-24. doi:  10.1016/j.brainresbull.2014.04.011
[12] Silva AJ, Kogan JH, Frankland PW, et al. CREB and memory. Annu Rev Neurosci, 1998; 21, 127-48. doi:  10.1146/annurev.neuro.21.1.127
[13] Ma H, Groth RD, Cohen SM, et al. γCaMKⅡ shuttles Ca2+/CaM to the nucleus to trigger CREB phosphorylation and gene expression. Cell, 2014; 159, 281-94. doi:  10.1016/j.cell.2014.09.019
[14] Hardingham GE, Arnold FJ, Bading H. Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci, 2001; 4, 261-7. doi:  10.1038/85109
[15] Bito H, Deisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation:a Ca2+-and stimulus duration-dependent switch for hippocampal gene expression. Cell, 1996; 87, 1203-14. doi:  10.1016/S0092-8674(00)81816-4
[16] Li C, Yang L, Li CH, Xie Y, et al. Dosimetric variability of the rats' exposure to electromagnetic pulses. Electromagn Biol Med, 2015; 34, 334-43. doi:  10.3109/15368378.2014.925472
[17] Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Meth, 1984; 11, 47-60. doi:  10.1016/0165-0270(84)90007-4
[18] Vorhees CV, Williams MT. Morris water maze:procedures for assessing spatial and related forms of learning and memory. Nat Protoc, 2006; 1, 848-58. doi:  10.1038/nprot.2006.116
[19] D'Hooge R, De Deyn PP. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev, 2001; 36, 60-90. doi:  10.1016/S0165-0173(01)00067-4
[20] Sharma A, Sisodia R, Bhatnagar D, et al. Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves. Int J Radiat Biol, 2014; 90, 29-35. doi:  10.3109/09553002.2013.835883
[21] Herrmann CS, Struber D, Helfrich RF, et al. EEG oscillations:From correlation to causality. Int J Psychophysiol, 2016; 103, 12-21. doi:  10.1016/j.ijpsycho.2015.02.003
[22] Vecchio F, Miraglia F, Quaranta D, et al. Cortical connectivity and memory performance in cognitive decline:A study via graph theory from EEG data. Neuroscience, 2016; 316, 143-50. doi:  10.1016/j.neuroscience.2015.12.036
[23] Purdon PL, Pierce ET, Mukamel EA, et al. Electroencephalogram signatures of loss and recovery of consciousness from propofol. Proc Natl Acad Sci USA, 2013; 110, E1142-E51. doi:  10.1073/pnas.1221180110
[24] Takashima S, Onaral B, Schwan HP. Effects of modulated RF energy on the EEG of mammalian brains. Effects of acute and chronic irradiations. Radiat Environ Biophys, 1979; 16, 15-27. doi:  10.1007/BF01326893
[25] Thuröczy G, Kubinyi G, Bodo M, et al. Simultaneous response of brain electrical activity (EEG) and cerebral circulation (REG) to microwave exposure in rats. Rev Environ Health, 1994; 10, 135-48. http://europepmc.org/abstract/med/8047672
[26] Wang JX, Rogers LM, Gross EZ, et al. Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 2014; 345, 1054-57. doi:  10.1126/science.1252900
[27] Bannerman DM, Sprengel R, Sanderson DJ, et al. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat Rev Neurosci, 2014; 15, 181-92. doi:  10.1038/nrn3677
[28] Mantamadiotis T, Papalexis N, Dworkin S. CREB signalling in neural stem/progenitor cells:recent developments and the implications for brain tumour biology. BioEssays, 2012; 34, 293-300. doi:  10.1002/bies.v34.4
[29] Dalla Massara L, Osuru HP, Oklopcic A, et al. General anesthesia causes epigenetic histone modulation of c-Fos and brain-derived neurotrophic factor, target genes important for neuronal development in the immature rat hippocampus. Anesthesiologists, 2016; 124, 1311-27. doi:  10.1097/ALN.0000000000001111
[30] Yu XW, Curlik DM, Oh MM, et al. CREB overexpression in dorsal CA1 ameliorates long-term memory deficits in aged rats. Elife, 2017; 6, e19358. doi:  10.7554/eLife.19358
[31] Perkinton MS, Ip J, Wood GL, et al. Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem, 2002; 80, 239-54. doi:  10.1046/j.0022-3042.2001.00699.x
[32] Bading H. Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci, 2013; 14, 593-608. doi:  10.1038/nrn3531
[33] Lau CG, Takeuchi K, Rodenasruano A, et al. Regulation of NMDA receptor Ca2+ signalling and synaptic plasticity. Biochem Soc Trans, 2009; 37, 1369-74. doi:  10.1042/BST0371369
[34] Cammarota M, Bevilaqua LR, Ardenghi P, et al. Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning:abolition by NMDA receptor blockade. Mol Brain Res, 2000; 76, 36-46. doi:  10.1016/S0169-328X(99)00329-0
[35] Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron, 2014; 82, 279-93. doi:  10.1016/j.neuron.2014.03.030
[36] Kaufman AM, Milnerwood AJ, Sepers MD, et al. Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci, 2012; 32, 3992-4003. doi:  10.1523/JNEUROSCI.4129-11.2012
[37] Dau A, Gladding CM, Sepers MD, et al. Chronic blockade of extrasynaptic NMDA receptors ameliorates synaptic dysfunction and pro-death signaling in Huntington disease transgenic mice. Neurobiol Dis, 2014; 62, 533-42. doi:  10.1016/j.nbd.2013.11.013
[38] Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci, 2002; 5, 405-14. doi:  10.1038/nn835