[1] Dixon MJ, Marazita ML, Beaty TH, et al. Cleft lip and palate:understanding genetic and environmental influences. Nat Rev Genet, 2011; 12, 167-78. http://www.ncbi.nlm.nih.gov/pubmed/21331089
[2] Li H, Luo M, Luo J, et al. A discriminant analysis prediction model of non-syndromic cleft lip with or without cleft palate based on risk factors. BMC Pregnancy Childbirth, 2016; 16, 368. doi:  10.1186/s12884-016-1116-4
[3] Stuppia L, Capogreco M, Marzo G, et al. Genetics of syndromic and nonsyndromic cleft lip and palate. J Craniofac Surg, 2011; 22, 1722-6. doi:  10.1097/SCS.0b013e31822e5e4d
[4] Vieira AR, Orioli IM, Castilla EE, et al. MSX1 and TGFB3 contribute to clefting in South America. J Dent Res, 2003; 82, 289-92. doi:  10.1177/154405910308200409
[5] Zucchero TM, Cooper ME, Maher BS, et al. Interferon regulatory factor 6 (IRF6) gene variants and the risk of isolated cleft lip or palate. N Engl J Med, 2004; 351, 769-80. doi:  10.1056/NEJMoa032909
[6] Sozen MA, Hecht JT, Spritz RA. Mutation and association analysis of the PVR and PVRL2 genes in patients with non-syndromic cleft lip and palate. Genet Mol Biol, 2009; 32, 466-9. doi:  10.1590/S1415-47572009000300007
[7] Liu YP, Xu LF, Wang Q, et al. Identification of susceptibility genes in non-syndromic cleft lip with or without cleft palate using whole-exome sequencing. Medicina Oral Patología Oral y Cirugia Bucal, 2015; 20, 763-70. http://europepmc.org/articles/PMC4670259
[8] Ernst R, Mueller B, Ploegh HL, et al. The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. Mol Cell, 2009; 36, 28-38. doi:  10.1016/j.molcel.2009.09.016
[9] Juan Zhang, Xiaofei Zhang, Feng Xie, et al. The regulation of TGF-β/SMAD signaling by protein deubiquitination. Protein Cell, 2014; 5, 503-17. doi:  10.1007/s13238-014-0058-8
[10] Wicks SJ, Haros K, Maillard M, et al. The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene, 2005; 24, 8080-4. doi:  10.1038/sj.onc.1208944
[11] Zhang L, Zhou F, Drabsch Y, et al. USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type Ⅰ receptor. Nat Cell Biol, 2012; 14, 717-26. doi:  10.1038/ncb2522
[12] Herhaus L, Al-Salihi M, Macartney T, et al. OTUB1 enhances TGFbeta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun, 2013; 4, 2519. doi:  10.1038/ncomms3519
[13] Greene RM, Pisano MM. Palate morphogenesis:current understanding and future directions. Birth Defects Res C Embryo Today, 2010; 90, 133-54. doi:  10.1002/(ISSN)1542-9768
[14] Kohama K, Nonaka K, Hosokawa R, et al. TGF-beta-3 promotes scarless repair of cleft lip in mouse fetuses. J Dent Res, 2002; 81, 688-94. doi:  10.1177/154405910208101007
[15] Reutter H, Birnbaum S, Mende M, et al. TGFB3 displays parent-of-origin effects among central Europeans with nonsyndromic cleft lip and palate. J Hum Genet, 2008; 53, 656-61. doi:  10.1007/s10038-008-0296-9
[16] Wang HY, Qiu T, Shi J, et al. Gene expression profiling analysis contributes to understanding the association between non-syndromic cleft lip and palate, and cancer. Mol Med Rep, 2016; 13, 2110-6. doi:  10.3892/mmr.2016.4802
[17] Iyyanar PPR, Nazarali AJ. Hoxa2 Inhibits Bone Morphogenetic Protein Signaling during Osteogenic Differentiation of the Palatal Mesenchyme. Front Physiol, 2017; 8, 929. doi:  10.3389/fphys.2017.00929
[18] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell, 2003; 113, 685-700. doi:  10.1016/S0092-8674(03)00432-X
[19] Hata A, Chen YG. TGF-beta Signaling from Receptors to Smads. Cold Spring Harb Perspect Biol, 2016; 8. http://uu.diva-portal.org/smash/record.jsf?pid=diva2%3A393861&dswid=-8907
[20] Jiang R, Bush JO, Lidral AC. Development of the upper lip:morphogenetic and molecular mechanisms. Dev Dyn, 2006; 235, 1152-66. doi:  10.1002/(ISSN)1097-0177
[21] Wang LQ, Zhang Y, Yan H, et al. MicroRNA-373 functions as an oncogene and targets YOD1 gene in cervical cancer. Biochem Biophys Res Commun, 2015; 459, 515-20. doi:  10.1016/j.bbrc.2015.02.138
[22] Powder KE, Ku YC, Brugmann SA, et al. A cross-species analysis of microRNAs in the developing avian face. PLoS One, 2012; 7, e35111. doi:  10.1371/journal.pone.0035111
[23] Liu Y, Huang T, Zhao X, et al. MicroRNAs modulate the Wnt signaling pathway through targeting its inhibitors. Biochem Biophys Res Commun, 2011; 408, 259-64. doi:  10.1016/j.bbrc.2011.04.009
[24] Dudas M, Kaartinen V. Tgf-beta superfamily and mouse craniofacial development:interplay of morphogenetic proteins and receptor signaling controls normal formation of the face. Curr Top Dev Biol, 2005; 66, 65-133. doi:  10.1016/S0070-2153(05)66003-6
[25] Proetzel G, Pawlowski SA, Wiles MV, et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet, 1995; 11, 409-14. doi:  10.1038/ng1295-409
[26] Ichikawa E, Watanabe A, Nakano Y, et al. PAX9 and TGFB3 are linked to susceptibility to nonsyndromic cleft lip with or without cleft palate in the Japanese:population-based and family-based candidate gene analyses. J Hum Genet, 2006; 51, 38-46. doi:  10.1007/s10038-005-0319-8
[27] Zhu J, Hao L, Li S, et al. MTHFR, TGFB3, and TGFA polymorphisms and their association with the risk of non-syndromic cleft lip and cleft palate in China. Am J Med Genet A, 2010; 152A, 291-8. doi:  10.1002/ajmg.a.v152a:2
[28] Gaarenstroom T, Hill CS. TGF-beta signaling to chromatin:how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol, 2014; 32, 107-18. doi:  10.1016/j.semcdb.2014.01.009
[29] Dupont S, Inui M, Newfeld SJ. Regulation of TGF-beta signal transduction by mono-and deubiquitylation of Smads. FEBS Lett, 2012; 586, 1913-20. doi:  10.1016/j.febslet.2012.03.037
[30] Kaartinen V, Voncken JW, Shuler C, et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat Genet, 1995; 4, 415-21. http://europepmc.org/abstract/MED/7493022