[1] Wang C, Horby P W, Hayden FG, et al. A novel coronavirus outbreak of global health concern. Lancet, 2020; 395, 470−3. doi:  10.1016/S0140-6736(20)30185-9
[2] Huang CL, Wang YM, Li XW, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020; 395, 497−506. doi:  10.1016/S0140-6736(20)30183-5
[3] World Health Organization. WHO Director-General's remarks at the media briefing on 2019-nCoV on 11 February 2020. https://new.qq.com/omn/20200212/20200212A03TJD00.html. [2020-02-11].
[4] World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - March 11 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19-11-march-2020. [2020-03-11].
[5] World Health Organization. WHO director-general's statement on IHR emergency committee on novel coronavirus (2019-nCoV). https://www.who.int/dg/speeches/detail/who-director-general-s-statement-on-ihr-emergency-committee-on-novel-coronavirus-(2019-ncov). [2020-01-30].
[6] Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol, 2016; 3, 237−61. doi:  10.1146/annurev-virology-110615-042301
[7] Lu RJ, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020; 395, 565−74. doi:  10.1016/S0140-6736(20)30251-8
[8] Chinese Center for Disease Control. Distribution of new coronavirus pneumonia]. http://2019ncov.chinacdc.cn/2019-nCoV/global.html. [2020-05-27]. (In Chinese)
[9] Weiss SR, Navas-Martin S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol Mol Biol Rev, 2005; 69, 635−64. doi:  10.1128/MMBR.69.4.635-664.2005
[10] Su S, Wong G, Shi WF, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol, 2016; 24, 490−502. doi:  10.1016/j.tim.2016.03.003
[11] Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol, 2019; 17, 181−92. doi:  10.1038/s41579-018-0118-9
[12] Song ZQ, Xu YF, Bao LL, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses, 2019; 11, 59. doi:  10.3390/v11010059
[13] Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol, 2015; 89, 1954−64. doi:  10.1128/JVI.02615-14
[14] Khailany RA, Safdar M, Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Rep, 2020; 19, 100682. doi:  10.1016/j.genrep.2020.100682
[15] Lan J, Ge JW, Yu JF, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020; 581, 215−20. doi:  10.1038/s41586-020-2180-5
[16] Tian SF, Hu WD, Niu L, et al. Pulmonary pathology of early-phase 2019 Novel Coronavirus (COVID-19) pneumonia in two patients with lung cancer. J Thorac Oncol, 2020; 15, 700−4. doi:  10.1016/j.jtho.2020.02.010
[17] Xu Z, Shi L, Wang YJ, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med, 2020; 8, 420−2. doi:  10.1016/S2213-2600(20)30076-X
[18] Xiao F, Tang MW, Zheng XB, et al. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020; 158, 1831−3. doi:  10.1053/j.gastro.2020.02.055
[19] Lauer SA, Grantz KH, Bi QF, et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med, 2020; 172, 577−82. doi:  10.7326/M20-0504
[20] Chen NS, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet, 2020; 395, 507−13. doi:  10.1016/S0140-6736(20)30211-7
[21] Wang DW, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA, 2020; 323, 1061−9. doi:  10.1001/jama.2020.1585
[22] Yang WJ, Cao QQ, Qin L, et al. Clinical characteristics and imaging manifestations of the 2019 novel coronavirus disease (COVID-19): a multi-center study in Wenzhou city, Zhejiang, China. J Infect, 2020; 80, 388−93. doi:  10.1016/j.jinf.2020.02.016
[23] Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med, 2020; 382, 1708−20. doi:  10.1056/NEJMoa2002032
[24] Li Q, Guan XH, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med, 2020; 382, 1199−207. doi:  10.1056/NEJMoa2001316
[25] Jalava K. First respiratory transmitted food borne outbreak? Int J Hyg Environ Health, 2020; 226, 113490. doi:  10.1016/j.ijheh.2020.113490
[26] National Health Commission of the People’s Republic of China. Diagnosis and treatment protocols of COVID-19 infection (7th edition). https://www.cma.org.cn/art/2020/3/4/art_2928_33242.html. [2020-03-04]. (In Chinese)
[27] Kampf G, Todt D, Pfaender S, et al. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect, 2020; 104, 246−51. doi:  10.1016/j.jhin.2020.01.022
[28] Kwok YL, Gralton J, McLaws ML. Face touching: a frequent habit that has implications for hand hygiene. Am J Infect Control, 2015; 43, 112−4. doi:  10.1016/j.ajic.2014.10.015
[29] Tian Y, Rong L, Nian WD, et al. Review article: gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther, 2020; 51, 843−51. doi:  10.1111/apt.15731
[30] Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020; 579, 270−3. doi:  10.1038/s41586-020-2012-7
[31] Centers for Disease Control and Prevention. Testing for COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/testing.html. [2020-06-24].
[32] Sahu KK, Mishra AK, Lal A. Comprehensive update on current outbreak of novel coronavirus infection (2019-nCoV). Ann Transl Med, 2020; 8, 393. doi:  10.21037/atm.2020.02.92
[33] Nishiura H, Kobayashi T, Miyama T, et al. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int J Infect Dis, 2020; 94, 154−5. doi:  10.1016/j.ijid.2020.03.020
[34] Ai T, Yang ZL, Hou HY, et al. Correlation of chest CT and RT-PCR testing for coronavirus disease 2019 (COVID-19) in China: a report of 1014 cases. Radiology, 2020; 296, E32−40. doi:  10.1148/radiol.2020200642
[35] Fang YC, Zhang HQ, Xie JC, et al. Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology, 2020; 296, E115−7. doi:  10.1148/radiol.2020200432
[36] Chan JFW, Yip CCY, To KKW, et al. Improved molecular diagnosis of COVID-19 by the novel, highly sensitive and specific COVID-19-RdRp/hel real-time reverse transcription-PCR Assay validated in vitro and with clinical specimens. J Clin Microbiol, 2020; 58, e00310−20.
[37] Yang WJ, Sirajuddin A, Zhang XC, et al. The role of imaging in 2019 novel coronavirus pneumonia (COVID-19). Eur Radiol, 2020; 30, 4874−82. doi:  10.1007/s00330-020-06827-4
[38] Ye Z, Zhang Y, Wang Y, et al. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol, 2020; 30, 4381−9. doi:  10.1007/s00330-020-06801-0
[39] Some drugs for COVID-19. Med Lett Drugs Ther, 2020; 62, 49-50.
[40] Day M. Covid-19: ibuprofen should not be used for managing symptoms, say doctors and scientists. BMJ, 2020; 368, m1086.
[41] Zeng YC, Cai ZX, Xianyu YY, et al. Prognosis when using extracorporeal membrane oxygenation (ECMO) for critically ill COVID-19 patients in China: a retrospective case series. Crit Care, 2020; 24, 148. doi:  10.1186/s13054-020-2840-8
[42] Ye Q, Wang BL, Mao JH. The pathogenesis and treatment of the `Cytokine Storm' in COVID-19. J Infect, 2020; 80, 607−13. doi:  10.1016/j.jinf.2020.03.037
[43] Bridgewood C, Damiani G, Sharif K, et al. Rationale for evaluating PDE4 inhibition for mitigating against severe inflammation in COVID-19 pneumonia and beyond. Isr Med Assoc J, 2020; 22, 335−9.
[44] Damiani G, Pacifico A, Bragazzi NL, et al. Biologics increase the risk of SARS-CoV-2 infection and hospitalization, but not ICU admission and death: real-life data from a large cohort during red-zone declaration. Dermatol Ther, 2020; 1, e13475.
[45] Han YY, Jiang M, Xia D, et al. COVID-19 in a patient with long-term use of glucocorticoids: a study of a familial cluster. Clin Immunol, 2020; 214, 108413. doi:  10.1016/j.clim.2020.108413
[46] Shang LH, Zhao JP, Hu Y, et al. On the use of corticosteroids for 2019-nCoV pneumonia. Lancet, 2020; 395, 683−4. doi:  10.1016/S0140-6736(20)30361-5
[47] Long H, Nie L, Xiang XC, et al. D-dimer and prothrombin time are the significant indicators of severe COVID-19 and poor prognosis. Biomed Res Int, 2020; 2020, 6159720.
[48] Thachil J, Tang N, Gando S, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost, 2020; 18, 1023−6. doi:  10.1111/jth.14810
[49] Greinacher A, Selleng K, Warkentin TE. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost, 2017; 15, 2099−114. doi:  10.1111/jth.13813
[50] Yi Y, Lagniton PNP, Ye S, et al. COVID-19: what has been learned and to be learned about the novel coronavirus disease. Int J Biol Sci, 2020; 16, 1753−66. doi:  10.7150/ijbs.45134
[51] Garraud O, Heshmati F, Pozzetto B, et al. Plasma therapy against infectious pathogens, as of yesterday, today and tomorrow. Transfus Clin Biol, 2016; 23, 39−44. doi:  10.1016/j.tracli.2015.12.003
[52] Parry RP, Tettmar KI, Hoschler K, et al. Strategies for screening blood donors to source convalescent H1N1v plasma for intervention therapy. Vox Sang, 2012; 103, 107−12. doi:  10.1111/j.1423-0410.2012.01599.x
[53] Cheng Y, Wong R, Soo YO, et al. use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis, 2005; 24, 44−6. doi:  10.1007/s10096-004-1271-9
[54] Arabi YM, Hajeer AH, Luke T, et al. Feasibility of using convalescent plasma immunotherapy for MERS-CoV infection, saudi arabia. Emerg Infect Dis, 2016; 22, 1554−61. doi:  10.3201/eid2209.151164
[55] Zhang B, Liu SY, Tan T, et al. Treatment with convalescent plasma for critically Ill patients with severe acute respiratory syndrome coronavirus 2 infection. CHEST, 2020; 158, e9−13. doi:  10.1016/j.chest.2020.03.039
[56] Duan K, Liu BD, Li CS, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA, 2020; 117, 9490−6. doi:  10.1073/pnas.2004168117
[57] Shen CG, Wang ZQ, Zhao F, et al. Treatment of 5 critically Ill patients with COVID-19 with convalescent plasma. JAMA, 2020; 323, 1582−9. doi:  10.1001/jama.2020.4783
[58] Lykkesfeldt J, Michels A J, Frei B. Vitamin C. Adv Nutr, 2014; 5, 16−8. doi:  10.3945/an.113.005157
[59] Carr AC, Maggini S. Vitamin C and immune function. Nutrients, 2017; 9, 1211. doi:  10.3390/nu9111211
[60] Manning J, Mitchell B, Appadurai DA, et al. Vitamin C promotes maturation of T-cells. Antioxid Redox Signal, 2013; 19, 2054−67. doi:  10.1089/ars.2012.4988
[61] Carr AC, Rosengrave PC, Bayer S, et al. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care, 2017; 21, 300. doi:  10.1186/s13054-017-1891-y
[62] Hemilä H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev, 2013; Cd000980.
[63] Hemilä H, Chalker E. Vitamin C can shorten the length of stay in the ICU: a meta-analysis. Nutrients, 2019; 11, 708. doi:  10.3390/nu11040708
[64] Hemilä H, Chalker E. Vitamin C may reduce the duration of mechanical ventilation in critically ill patients: a meta-regression analysis. J Intensive Care, 2020; 8, 15. doi:  10.1186/s40560-020-0432-y
[65] Liu PT, Stenger S, Li HY, et al. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 2006; 311, 1770−3. doi:  10.1126/science.1123933
[66] Yang D, Chen Q, Schmidt AP, et al. LL-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells. J Exp Med, 2000; 192, 1069−74. doi:  10.1084/jem.192.7.1069
[67] Martineau AR, Jolliffe DA, Hooper RL, et al. Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ, 2017; 356, i6583.
[68] Sharifi A, Vahedi H, Nedjat S, et al. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. APMIS, 2019; 127, 681−7. doi:  10.1111/apm.12982
[69] Topilski I, Flaishon L, Naveh Y, et al. The anti-inflammatory effects of 1,25-dihydroxyvitamin D3 on Th2 cells in vivo are due in part to the control of integrin-mediated T lymphocyte homing. Eur J Immunol, 2004; 34, 1068−76. doi:  10.1002/eji.200324532
[70] Xu J, Yang JL, Chen J, et al. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol Med Rep, 2017; 16, 7432−7438. doi:  10.3892/mmr.2017.7546
[71] Vásárhelyi B, Sátori A, Olajos F, et al. Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period. Orv Hetil, 2011; 152, 1272−7. doi:  10.1556/OH.2011.29187
[72] Rhodes JM, Subramanian S, Laird E, et al. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther, 2020; 51, 1434−7. doi:  10.1111/apt.15777
[73] Chen Z, Nakamura T. Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother Res, 2004; 18, 592−4. doi:  10.1002/ptr.1485
[74] Cinatl J, Morgenstern B, Bauer G, et al. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003; 361, 2045−6. doi:  10.1016/S0140-6736(03)13615-X
[75] Luo WS, Su XJ, Gong SJ, et al. Anti-SARS coronavirus 3C-like protease effects of Rheum palmatum L. extracts. Biosci Trends, 2009; 3, 124−6.
[76] Lau KM, Lee KM, Koon CM, et al. Immunomodulatory and anti-SARS activities of Houttuynia cordata. J Ethnopharmacol, 2008; 118, 79−85. doi:  10.1016/j.jep.2008.03.018
[77] Lin CW, Tsai FJ, Tsai CH, et al. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res, 2005; 68, 36−42. doi:  10.1016/j.antiviral.2005.07.002
[78] Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett, 2012; 22, 4049−54. doi:  10.1016/j.bmcl.2012.04.081
[79] Schwarz S, Sauter D, Wang K, et al. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus. Planta Med, 2014; 80, 177−82. doi:  10.1055/s-0033-1360277
[80] Schwarz S, Wang K, Yu WJ, et al. Emodin inhibits current through SARS-associated coronavirus 3a protein. Antiviral Res, 2011; 90, 64−9. doi:  10.1016/j.antiviral.2011.02.008
[81] National Administration of Traditional Chinese Medicine. National administration of traditional chinese medicine: explore the effect of qingfei paidu decoction on new coronary pneumonia. http://www.satcm.gov.cn/xinxifabu/meitibaodao/2020-02-17/13174.html. [2020-02-17]. (In Chinese)
[82] Xia WG, an CQ, Zheng CJ, et al. Clinical observation on 34 patients with novel coronavirus pneumonia (COVID-19) treated with intergrated traditional Chinese and western medicine. J Tradit Chin Med, 2020; 61, 375−82. (In Chinese)
[83] Perez EE, Orange JS, Bonilla F, et al. Update on the use of immunoglobulin in human disease: A review of evidence. J Allergy Clin Immunol, 2017; 139, S1−46. doi:  10.1016/j.jaci.2016.09.023
[84] Schwab I, Nimmerjahn F. Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol, 2013; 13, 176−89. doi:  10.1038/nri3401
[85] Cao W, Liu XS, Bai T, et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis, 2020; 7, ofaa102. doi:  10.1093/ofid/ofaa102
[86] Mohtadi N, Ghaysouri A, Shirazi S, et al. Recovery of severely ill COVID-19 patients by intravenous immunoglobulin (IVIG) treatment: a case series. Virology, 2020; 548, 1−5. doi:  10.1016/j.virol.2020.05.006
[87] Xie Y, Cao S, Dong H, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect, 2020; 81, 318−56.
[88] Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: a comprehensive review. Autoimmun Rev, 2020; 19, 102569. doi:  10.1016/j.autrev.2020.102569
[89] Agnandji ST, Huttner A, Zinser ME, et al. Phase 1 trials of rVSV ebola vaccine in africa and Europe. N Engl J Med, 2016; 374, 1647−60. doi:  10.1056/NEJMoa1502924
[90] Burki T. Ebola virus vaccine receives prequalification. Lancet, 2019; 394, 1893. doi:  10.1016/S0140-6736(19)32905-8
[91] Zhang JY, Zeng H, Gu J, et al. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines (Basel), 2020; 8, 153. doi:  10.3390/vaccines8020153
[92] Armengaud J, Delaunay-Moisan A, Thuret JY, et al. The importance of naturally attenuated SARS-CoV-2in the fight against COVID-19. Environ Microbiol, 2020; 22, 1997−2000. doi:  10.1111/1462-2920.15039
[93] Du LY, He YX, Zhou YS, et al. The spike protein of SARS-CoV-a target for vaccine and therapeutic development. Nat Rev Microbiol, 2009; 7, 226−36. doi:  10.1038/nrmicro2090
[94] Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov, 2018; 17, 261−79. doi:  10.1038/nrd.2017.243
[95] Liu MA. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines (Basel), 2019; 7, 37. doi:  10.3390/vaccines7020037
[96] Zhu FC, Li YH, Guan XH, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet, 2020; 395, 1845−54. doi:  10.1016/S0140-6736(20)31208-3
[97] Azmi F, Ahmad Fuaad AAH, Skwarczynski M, et al. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum Vaccin Immunother, 2014; 10, 778−96. doi:  10.4161/hv.27332
[98] Sambhara S, Mcelhaney JE. Immunosenescence and influenza vaccine efficacy. In: Compans RW, Orenstein WA. Vaccines for Pandemic Influenza. Springer. 2009, 413-29.
[99] Tian XL, Li C, Huang AL, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect, 2020; 9, 382−5. doi:  10.1080/22221751.2020.1729069
[100] Plantone D, Koudriavtseva T. Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig, 2018; 38, 653−71. doi:  10.1007/s40261-018-0656-y
[101] Wang ML, Cao RY, Zhang LK, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res, 2020; 30, 269−71. doi:  10.1038/s41422-020-0282-0
[102] Vincent MJ, Bergeron E, Benjannet S, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J, 2005; 2, 69. doi:  10.1186/1743-422X-2-69
[103] Yao XT, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis, 2020; 71, 732−9. doi:  10.1093/cid/ciaa237
[104] Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents, 2020; 56, 105949. doi:  10.1016/j.ijantimicag.2020.105949
[105] Molina JM, Delaugerre C, Le Goff J, et al. No evidence of rapid antiviral clearance or clinical benefit with the combination of hydroxychloroquine and azithromycin in patients with severe COVID-19 infection. Med Mal Infect, 2020; 50, 384. doi:  10.1016/j.medmal.2020.03.006
[106] Tchesnokov EP, Feng JY, Porter DP, et al. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses, 2019; 11, 326. doi:  10.3390/v11040326
[107] Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med, 2017; 9, eaal3653. doi:  10.1126/scitranslmed.aal3653
[108] De Wit E, Feldmann F, Cronin J, et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA, 2020; 117, 6771−6. doi:  10.1073/pnas.1922083117
[109] McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: a review of early and emerging options. Open Forum Infect Dis, 2020; 7, ofaa105. doi:  10.1093/ofid/ofaa105
[110] Grein J, Ohmagari N, Shin D, et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med, 2020; 382, 2327−36. doi:  10.1056/NEJMoa2007016
[111] Zumla A, Chan JFW, Azhar EI, et al. Coronaviruses - drug discovery and therapeutic options. Nat Rev Drug Discov, 2016; 15, 327−47. doi:  10.1038/nrd.2015.37
[112] Chu CM, Cheng VCC, Hung IFN, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax, 2004; 59, 252−6. doi:  10.1136/thorax.2003.012658
[113] Wang ZW, Chen XR, Lu YF, et al. Clinical characteristics and therapeutic procedure for four cases with 2019 novel coronavirus pneumonia receiving combined Chinese and Western medicine treatment. Biosci Trends, 2020; 14, 64−8. doi:  10.5582/bst.2020.01030
[114] Cao B, Wang YM, Wen DN, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med, 2020; 382, 1787−99. doi:  10.1056/NEJMoa2001282
[115] World Health Organization. Coronavirus disease (COVID-19) advice for the public. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public. [2020-04-29].
[116] Centers for Disease Control and Prevention. Recommendation regarding the use of cloth face coverings, especially in areas of significant community-based transmission. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/cloth-face-cover.html. [2020-04-03].
[117] Bragazzi NL, Dai HJ, Damiani G, et al. How big data and artificial intelligence can help better manage the COVID-19 pandemic. Int J Environ Res Public Health, 2020; 17, 3176. doi:  10.3390/ijerph17093176