[1] Brown CH, LaFlam A, Max L, et al. Delirium after spine surgery in older adults: incidence, risk factors, and outcomes. J Am Geriatr Soc, 2016; 64, 2101−8. doi:  10.1111/jgs.14434
[2] Needham MJ, Webb CE, Bryden DC. Postoperative cognitive dysfunction and dementia: what we need to know and do. Br J Anaesth, 2017; 119, i115−25. doi:  10.1093/bja/aex354
[3] Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA, 2004; 291, 1753−62. doi:  10.1001/jama.291.14.1753
[4] Siddiqi N, House AO, Holmes JD. Occurrence and outcome of delirium in medical in-patients: a systematic literature review. Age Ageing, 2006; 35, 350−64. doi:  10.1093/ageing/afl005
[5] Rump K, Adamzik M. Epigenetic mechanisms of postoperative cognitive impairment induced by anesthesia and neuroinflammation. Cells, 2022; 11, 2954. doi:  10.3390/cells11192954
[6] Subramaniyan S, Terrando N. Neuroinflammation and perioperative neurocognitive disorders. Anesth Analg, 2019; 128, 781−8. doi:  10.1213/ANE.0000000000004053
[7] Maldonado JR. Delirium pathophysiology: an updated hypothesis of the etiology of acute brain failure. Int J Geriatr Psychiatry, 2018; 33, 1428−57. doi:  10.1002/gps.4823
[8] Schoen J, Meyerrose J, Paarmann H, et al. Preoperative regional cerebral oxygen saturation is a predictor of postoperative delirium in on-pump cardiac surgery patients: a prospective observational trial. Crit Care, 2011; 15, R218. doi:  10.1186/cc10454
[9] Pandharipande PP, Morandi A, Adams JR, et al. Plasma tryptophan and tyrosine levels are independent risk factors for delirium in critically ill patients. Intensive Care Med, 2009; 35, 1886−92. doi:  10.1007/s00134-009-1573-6
[10] Pandharipande P, Ely EW. Sedative and analgesic medications: risk factors for delirium and sleep disturbances in the critically ill. Crit Care Clin, 2006; 22, 313−27. doi:  10.1016/j.ccc.2006.02.010
[11] Tripp BA, Dillon ST, Yuan M, et al. Targeted metabolomics analysis of postoperative delirium. Sci Rep, 2021; 11, 1521. doi:  10.1038/s41598-020-80412-z
[12] Guo Y, Zhang YN, Jia PY, et al. Preoperative serum metabolites are associated with postoperative delirium in elderly hip-fracture patients. J Gerontol A Biol Sci Med Sci, 2017; 72, 1689−96. doi:  10.1093/gerona/glx001
[13] Guo Y, Li YC, Zhang YN, et al. Post-operative delirium associated with metabolic alterations following hemi-arthroplasty in older patients. Age Ageing, 2020; 49, 88−95. doi:  10.1093/ageing/afz132
[14] Fiehn O. Metabolomics by gas chromatography-mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol, 2016; 114, 30.4.1−32.
[15] Han YZ, Zhang WC, Liu J, et al. Metabolomic and lipidomic profiling of preoperative CSF in elderly hip fracture patients with postoperative delirium. Front Aging Neurosci, 2020; 12, 570210. doi:  10.3389/fnagi.2020.570210
[16] Liu Y, Song F, Yang Y, et al. Mitochondrial DNA methylation drift and postoperative delirium in mice. Eur J Anaesthesiol, 2022; 39, 133−44. doi:  10.1097/EJA.0000000000001620
[17] Qiu YM, Huang XJ, Huang LN, et al. 5-HT(1A) receptor antagonist improves behavior performance of delirium rats through inhibiting PI3K/Akt/mTOR activation-induced NLRP3 activity. IUBMB Life, 2016; 68, 311−9. doi:  10.1002/iub.1491
[18] Mu JL, Liu XD, Dong YH, et al. Peripheral interleukin-6-associated microglial QUIN elevation in basolateral amygdala contributed to cognitive dysfunction in a mouse model of postoperative delirium. Front Med (Lausanne), 2022; 9, 998397.
[19] Farah R, Haraty H, Salame Z, et al. Salivary biomarkers for the diagnosis and monitoring of neurological diseases. Biomed J, 2018; 41, 63−87. doi:  10.1016/j.bj.2018.03.004
[20] Parkin GM, Corey-Bloom J, Snell C, et al. Salivary Huntingtin protein is uniquely associated with clinical features of Huntington's disease. Sci Rep, 2023; 13, 1034. doi:  10.1038/s41598-023-28019-y
[21] Hyvärinen E, Solje E, Vepsäläinen J, et al. Salivary metabolomics in the diagnosis and monitoring of neurodegenerative dementia. Metabolites, 2023; 13, 233. doi:  10.3390/metabo13020233
[22] Hyvärinen E, Savolainen M, Mikkonen JJW, et al. Salivary metabolomics for diagnosis and monitoring diseases: challenges and possibilities. Metabolites, 2021; 11, 587. doi:  10.3390/metabo11090587
[23] Peng M, Zhang C, Dong YL, et al. Battery of behavioral tests in mice to study postoperative delirium. Sci Rep, 2016; 6, 29874. doi:  10.1038/srep29874
[24] Zhou Y, Wang JY, Li XF, et al. Neuroprotectin D1 protects against postoperative delirium-like behavior in aged mice. Front Aging Neurosci, 2020; 12, 582674. doi:  10.3389/fnagi.2020.582674
[25] Lai HQ, Ouyang Y, Tian GH, et al. Rapid characterization and identification of the chemical constituents and the metabolites of Du-zhi pill using UHPLC coupled with quadrupole time-of-flight mass spectrometry. J Chromatogr B, 2022; 1209, 123433. doi:  10.1016/j.jchromb.2022.123433
[26] Yang J, Fu MM, Ji C, et al. Maize oxalyl-CoA decarboxylase1 degrades oxalate and affects the seed metabolome and nutritional quality. Plant Cell, 2018; 30, 2447−62. doi:  10.1105/tpc.18.00266
[27] Mevorach L, Forookhi A, Farcomeni A, et al. Perioperative risk factors associated with increased incidence of postoperative delirium: systematic review, meta-analysis, and Grading of Recommendations Assessment, Development, and Evaluation system report of clinical literature. Br J Anaesth, 2023; 130, e254−62. doi:  10.1016/j.bja.2022.05.032
[28] Cascella M, Muzio MR, Bimonte S, et al. Postoperative delirium and postoperative cognitive dysfunction: updates in pathophysiology, potential translational approaches to clinical practice and further research perspectives. Minerva Anestesiol, 2018; 84, 246−60.
[29] Velayati A, Shariatpanahi MV, Shahbazi E, et al. Association between preoperative nutritional status and postoperative delirium in individuals with coronary artery bypass graft surgery: a prospective cohort study. Nutrition, 2019; 66, 227−32. doi:  10.1016/j.nut.2019.06.006
[30] Mazzola P, Ward L, Zazzetta S, et al. Association between preoperative malnutrition and postoperative delirium after hip fracture surgery in older adults. J Am Geriatr Soc, 2017; 65, 1222−8. doi:  10.1111/jgs.14764
[31] Wang LH, Xu DJ, Wei XJ, et al. Electrolyte disorders and aging: risk factors for delirium in patients undergoing orthopedic surgeries. BMC Psychiatry, 2016; 16, 418. doi:  10.1186/s12888-016-1130-0
[32] Leung JM, Tang C, Do Q, et al. Sleep Loss the night before surgery and incidence of postoperative delirium in adults 65-95 years of age. Sleep Med, 2023; 105, 61−7. doi:  10.1016/j.sleep.2023.03.015
[33] Momeni M, Meyer S, Docquier MA, et al. Predicting postoperative delirium and postoperative cognitive decline with combined intraoperative electroencephalogram monitoring and cerebral near-infrared spectroscopy in patients undergoing cardiac interventions. J Clin Monit Comput, 2019; 33, 999−1009. doi:  10.1007/s10877-019-00253-8
[34] Terrando N, Eriksson LI, Ryu JK, et al. Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol, 2011; 70, 986−95. doi:  10.1002/ana.22664
[35] Degos V, Vacas S, Han ZY, et al. Depletion of bone marrow-derived macrophages perturbs the innate immune response to surgery and reduces postoperative memory dysfunction. Anesthesiology, 2013; 118, 527−36. doi:  10.1097/ALN.0b013e3182834d94
[36] Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016; 352, 712−6. doi:  10.1126/science.aad8373
[37] Lian H, Yang L, Cole A, et al. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron, 2015; 85, 101−15. doi:  10.1016/j.neuron.2014.11.018
[38] Shi QQ, Colodner KJ, Matousek SB, et al. Complement C3-deficient mice fail to display age-related hippocampal decline. J Neurosci, 2015; 35, 13029−42. doi:  10.1523/JNEUROSCI.1698-15.2015
[39] Vasek MJ, Garber C, Dorsey D, et al. A complement-microglial axis drives synapse loss during virus-induced memory impairment. Nature, 2016; 534, 538−43. doi:  10.1038/nature18283
[40] Xiong C, liu JH, Lin DD, et al. Complement activation contributes to perioperative neurocognitive disorders in mice. J Neuroinflammation, 2018; 15, 254. doi:  10.1186/s12974-018-1292-4
[41] Westhoff D, Witlox J, van Aalst C, et al. Preoperative protein profiles in cerebrospinal fluid in elderly hip fracture patients at risk for delirium: a proteomics and validation study. BBA Clin, 2015; 4, 115−22. doi:  10.1016/j.bbacli.2015.10.002
[42] Wang JH, Liu T, Bai Y, et al. The effect of parecoxib sodium on postoperative delirium in elderly patients with hip arthroplasty. Front Pharmacol, 2023; 14, 947982. doi:  10.3389/fphar.2023.947982
[43] Wang S, Greene R, Song YQ, et al. Postoperative delirium and its relationship with biomarkers for dementia: a meta-analysis. Int Psychogeriatr, 2022; 34, 377−90. doi:  10.1017/S104161022100274X
[44] Jaszczyk A, Juszczak GR. Glucocorticoids, metabolism and brain activity. Neurosci Biobehav Rev, 2021; 126, 113−45. doi:  10.1016/j.neubiorev.2021.03.007
[45] Reed LJ. A trail of research from lipoic acid to α-Keto acid dehydrogenase complexes. J Biol Chem, 2001; 276, 38329−36. doi:  10.1074/jbc.R100026200
[46] Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res, 2005; 79, 240−7. doi:  10.1002/jnr.20293
[47] Thomas SC, Alhasawi A, Appanna VP, et al. Brain metabolism and Alzheimer's disease: the prospect of a metabolite-based therapy. J Nutr Health Aging, 2015; 19, 58−63. doi:  10.1007/s12603-014-0511-7
[48] Maldonado JR. Neuropathogenesis of delirium: review of current etiologic theories and common pathways. Am J Geriatr Psychiatry, 2013; 21, 1190−222. doi:  10.1016/j.jagp.2013.09.005
[49] Hu ZC, Fan SH, Liu ML, et al. Objective diagnosis of post-stroke depression using NMR-based plasma metabonomics. Neuropsychiatr Dis Treat, 2019; 15, 867−81. doi:  10.2147/NDT.S192307
[50] Chmielewska K, Dzierzbicka K, Inkielewicz-Stępniak I, et al. Therapeutic potential of carnosine and its derivatives in the treatment of human diseases. Chem Res Toxicol, 2020; 33, 1561−78. doi:  10.1021/acs.chemrestox.0c00010
[51] Bressler J, Yu B, Mosley TH, et al. Metabolomics and cognition in African American adults in midlife: the atherosclerosis risk in communities study. Transl Psychiatry, 2017; 7, e1173. doi:  10.1038/tp.2017.118