[1] Caragata EP, Short SM. Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. Curr Opin Insect Sci, 2022; 50, 100875. doi:  10.1016/j.cois.2022.100875
[2] Rosendale AJ, Dunlevy ME, Mccue MD, et al. Progressive behavioural, physiological and transcriptomic shifts over the course of prolonged starvation in ticks. Mol Ecol, 2019; 28, 49−65. doi:  10.1111/mec.14949
[3] Cirimotich CM, Ramirez JL, Dimopoulos G. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe, 2011; 10, 307−10. doi:  10.1016/j.chom.2011.09.006
[4] Azambuja P, Garcia ES, Ratcliffe NA. Gut microbiota and parasite transmission by insect vectors. Trends Parasitol, 2005; 21, 568−72. doi:  10.1016/j.pt.2005.09.011
[5] Bonnet SI, Binetruy F, Hernández-Jarguín AM, et al. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol, 2017; 7, 236. doi:  10.3389/fcimb.2017.00236
[6] Weiss B, Aksoy S. Microbiome influences on insect host vector competence. Trends Parasitol, 2011; 27, 514−22. doi:  10.1016/j.pt.2011.05.001
[7] Jones RT, Knight R, Martin AP. Bacterial communities of disease vectors sampled across time, space, and species. Isme j, 2010; 4, 223−31. doi:  10.1038/ismej.2009.111
[8] Dong YM, Manfredini F, Dimopoulos G. Implication of the mosquito midgut microbiota in the defense against malaria parasites. PLoS Pathog, 2009; 5, e1000423. doi:  10.1371/journal.ppat.1000423
[9] Díaz-Sánchez S, Hernández-Jarguín A, Torina A, et al. Biotic and abiotic factors shape the microbiota of wild-caught populations of the arbovirus vector Culicoides imicola. Insect Mol Biol, 2018; 27, 847−61. doi:  10.1111/imb.12526
[10] Thapa S, Zhang Y, Allen MS. Effects of temperature on bacterial microbiome composition in Ixodes scapularis ticks. Microbiologyopen, 2019; 8, e00719. doi:  10.1002/mbo3.719
[11] Lamarre GPA, Hérault B, Fine PVA, et al. Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. J Anim Ecol, 2016; 85, 227−39. doi:  10.1111/1365-2656.12445
[12] Hawlena H, Rynkiewicz E, Toh E, et al. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. Isme J, 2013; 7, 221−3. doi:  10.1038/ismej.2012.71
[13] Bennett KL, Almanza A, McMillan WO, et al. Habitat disturbance and the organization of bacterial communities in Neotropical hematophagous arthropods. PLoS One, 2019; 14, e0222145. doi:  10.1371/journal.pone.0222145
[14] Veiga J, La Puente JMD, Václav R, et al. Culicoides paolae and C. circumscriptus as potential vectors of avian haemosporidians in an arid ecosystem. Parasit Vectors, 2018; 11, 524. doi:  10.1186/s13071-018-3098-8
[15] Carpenter S, Veronesi E, Mullens B, et al. Vector competence of Culicoides for arboviruses: three major periods of research, their influence on current studies and future directions. Rev Sci Tech, 2015; 34, 97−112. doi:  10.20506/rst.34.1.2347
[16] Sarkar A, Banerjee P, Kar S, et al. In vitro biochemical characterization and identification of hemolytic bacteria associated with life history of Culicoides peregrinus (Diptera: Ceratopogonidae), a vector of bluetongue virus. J Med Entomol, 2023; 60, 742−52.
[17] Guégan M, Zouache K, Démichel C, et al. The mosquito holobiont: fresh insight into mosquito-microbiota interactions. Microbiome, 2018; 6, 49. doi:  10.1186/s40168-018-0435-2
[18] Mathieu B, Garros C, Balenghien T, et al. A phylogenetic analysis of the biting midges belonging to Culicoides Latreille (Diptera: Ceratopogonidae) subgenus Avaritia using molecular data. Parasit Vectors, 2020; 13, 243. doi:  10.1186/s13071-020-04111-4
[19] Folmer O, Black M, Hoeh W, et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol, 1994; 3, 294−9.
[20] Liu YQ, Tao HY, Yu YX, et al. Molecular differentiation and species composition of genus Culicoides biting midges (Diptera: Ceratopogonidae) in different habitats in southern China. Vet Parasitol, 2018; 254, 49−57. doi:  10.1016/j.vetpar.2018.02.035
[21] Lejal E, Estrada-Peña A, Marsot M, et al. Taxon appearance from extraction and amplification steps demonstrates the value of multiple controls in tick microbiota analysis. Front Microbiol, 2020; 11, 1093. doi:  10.3389/fmicb.2020.01093
[22] Yang J, Pu J, Lu S, et al. Species-level analysis of human gut microbiota with metataxonomics. Front Microbiol, 2020; 11, 2029. doi:  10.3389/fmicb.2020.02029
[23] Meng XL, Lu S, Yang J, et al. Metataxonomics reveal vultures as a reservoir for Clostridium perfringens. Emerg Microbes Infect, 2017; 6, 1−8.
[24] Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods, 2013; 10, 996−8. doi:  10.1038/nmeth.2604
[25] Yarza P, Ludwig W, Euzéby J, et al. Update of the all-species living tree project based on 16S and 23S rRNA sequence analyses. Syst Appl Microbiol, 2010; 33, 291−9. doi:  10.1016/j.syapm.2010.08.001
[26] Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res, 2013; 41, D590−6.
[27] Hammer Ø, Harper DA, Ryan PD. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 2001; 4, 1-9.
[28] Anderson MJ. A new method for non-parametric multivariate analysis of variance. Austr Ecol 2001; 26, 32-46.
[29] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 2014; 15, 550. doi:  10.1186/s13059-014-0550-8
[30] Kini K, Agnimonhan R, Dossa R, et al. Genomics-informed multiplex PCR scheme for rapid identification of rice-associated bacteria of the genus pantoea. Plant Dis, 2021; 105, 2389−94. doi:  10.1094/PDIS-07-20-1474-RE
[31] Duron O, Jourdain E, McCoy KD. Diversity and global distribution of the Coxiella intracellular bacterium in seabird ticks. Ticks Tick Borne Dis, 2014; 5, 557−63. doi:  10.1016/j.ttbdis.2014.04.003
[32] Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol, 2018; 35, 1547−9. doi:  10.1093/molbev/msy096
[33] Shaha CM, Dar MA, Pandit RS. Mining the diversity and functional profile of bacterial symbionts from the larvae of Chironomus circumdatus (bloodworms). Folia Microbiol (Praha), 2022; 67, 861−72. doi:  10.1007/s12223-022-00984-3
[34] Portillo A, Palomar AM, De Toro M, et al. Exploring the bacteriome in anthropophilic ticks: To investigate the vectors for diagnosis. PLoS One, 2019; 14, e0213384. doi:  10.1371/journal.pone.0213384
[35] Machado-Ferreira E, Vizzoni VF, Balsemão-Pires E, et al. Coxiella symbionts are widespread into hard ticks. Parasitol Res, 2016; 115, 4691−9. doi:  10.1007/s00436-016-5230-z
[36] Guizzo MG, Parizi LF, Nunes RD, et al. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Sci Rep, 2017; 7, 17554. doi:  10.1038/s41598-017-17309-x
[37] Duron O, Binetruy F, Noël V, et al. Evolutionary changes in symbiont community structure in ticks. Mol Ecol, 2017; 26, 2905−21. doi:  10.1111/mec.14094
[38] Smith TA, Driscoll T, Gillespie JJ, et al. A Coxiella-like endosymbiont is a potential vitamin source for the Lone Star tick. Genome Biol Evol, 2015; 7, 831−8. doi:  10.1093/gbe/evv016
[39] Gottlieb Y, Lalzar I, Klasson L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol, 2015; 7, 1779−96. doi:  10.1093/gbe/evv108
[40] Duron O, Morel O, Noël V, et al. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Curr Biol, 2018; 28, 1896-902. e5. doi:  10.1016/j.cub.2018.04.038
[41] Zhong JM, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS One, 2007; 2, e405. doi:  10.1371/journal.pone.0000405
[42] Möhlmann TWR, Ter Braak CJF, Te Beest DE, et al. Species identity, life history, and geographic distance influence gut bacterial communities in lab-reared and european field-collected Culicoides biting midges. Microb Ecol, 2022; 84, 267−84. doi:  10.1007/s00248-021-01822-8
[43] Liu LJ, Martinez-Sañudo I, Mazzon L, et al. Bacterial communities associated with invasive populations of Bactrocera dorsalis (Diptera: Tephritidae) in China. Bull Entomol Res, 2016; 106, 718−28. doi:  10.1017/S0007485316000390
[44] Sick F, Beer M, Kampen H, et al. Culicoides biting midges-underestimated vectors for arboviruses of public health and veterinary importance. Viruses, 2019; 11, 376. doi:  10.3390/v11040376
[45] Kurilshikov A, Livanova NN, Fomenko NV, et al. Comparative metagenomic profiling of symbiotic bacterial communities associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus ticks. PLoS One, 2015; 10, e0131413. doi:  10.1371/journal.pone.0131413
[46] Lively CM, Clay K, Wade MJ, et al. Competitive co-existence of vertically and horizontally transmitted parasites. Evolut Ecol Res 2005; 7, 1183-90.
[47] Swei A, Kwan JY. Tick microbiome and pathogen acquisition altered by host blood meal. Isme J, 2017; 11, 813−6. doi:  10.1038/ismej.2016.152
[48] Cruz AT, Cazacu AC, Allen CH. Pantoea agglomerans, a plant pathogen causing human disease. J Clin Microbiol, 2007; 45, 1989−92. doi:  10.1128/JCM.00632-07
[49] Carretto E, Visiello R, Bardaro M, et al. Asaia lannensis bacteremia in a 'needle freak' patient. Future Microbiol, 2016; 11, 23−9. doi:  10.2217/fmb.15.126
[50] Mittal S, Sharma M, Yadav A, et al. Acinetobacter lwoffii an emerging pathogen in neonatal ICU. Infect Disord Drug Targets, 2015; 15, 184−8. doi:  10.2174/1871526515666150826114745