[1] van de Pavert SA, Mebius RE. New insights into the development of lymphoid tissues. Nat Rev Immunol, 2010; 10, 664-74. doi:  10.1038/nri2832
[2] McGovern N, Shin A, Low G, et al. Human fetal dendritic cells promote prenatal T-cell immune suppression through arginase-2. Nature, 2017; 546, 662-6. doi:  10.1038/nature22795
[3] Mebius RE. Organogenesis of lymphoid tissues. Nat Rev Immunol, 2003; 3, 292-303. doi:  10.1038/nri1054
[4] Pond CM, Mattacks CA. The activation of the adipose tissue associated with lymph nodes during the early stages of an immune response. Cytokine, 2002; 17, 131-9. doi:  10.1006/cyto.2001.0999
[5] Pond CM. Paracrine relationships between adipose and lymphoid tissues:implications for the mechanism of HIV-associated adipose redistribution syndrome. Trends Immunol, 2003; 24, 13-8. doi:  10.1016/S1471-4906(02)00004-2
[6] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng, 2001; 7, 211-28. doi:  10.1089/107632701300062859
[7] Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002; 13, 4279-95. doi:  10.1091/mbc.e02-02-0105
[8] Planat-Benard V, Silvestre JS, Cousin B, et al. Plasticity of human adipose lineage cells toward endothelial cells:physiological and therapeutic perspectives. Circulation, 2004; 109, 656-63. doi:  10.1161/01.CIR.0000114522.38265.61
[9] Rehman J, Traktuev D, Li J, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 2004; 109, 1292-8. doi:  10.1161/01.CIR.0000121425.42966.F1
[10] Puissant B, Barreau C, Bourin P, et al. Immunomodulatory effect of human adipose tissue-derived adult stem cells:comparison with bone marrow mesenchymal stem cells. Br J Haematol, 2005; 129, 118-29. doi:  10.1111/bjh.2005.129.issue-1
[11] Benezech C, Mader E, Desanti G, et al. Lymphotoxin-beta receptor signaling through NF-kappaB2-RelB pathway reprograms adipocyte precursors as lymph node stromal cells. Immunity, 2012; 37, 721-34. doi:  10.1016/j.immuni.2012.06.010
[12] Gil-Ortega M, Garidou L, Barreau C, et al. Native adipose stromal cells egress from adipose tissue in vivo:evidence during lymph node activation. Stem Cells, 2013; 31, 1309-20. doi:  10.1002/stem.v31.7
[13] van de Pavert SA, Olivier BJ, Goverse G, et al. Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation. Nat Immunol, 2009; 10, 1193-9. doi:  10.1038/ni.1789
[14] Luther SA, Ansel KM, Cyster JG. Overlapping roles of CXCL13, interleukin 7 receptor alpha, and CCR7 ligands in lymph node development. J Exp Med, 2003; 197, 1191-8. doi:  10.1084/jem.20021294
[15] Ohl L, Henning G, Krautwald S, et al. Cooperating mechanisms of CXCR5 and CCR7 in development and organization of secondary lymphoid organs. J Exp Med, 2003; 197, 1199-204. doi:  10.1084/jem.20030169
[16] Dejardin E, Droin NM, Delhase M, et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity, 2002; 17, 525-35. doi:  10.1016/S1074-7613(02)00423-5
[17] Yilmaz ZB, Weih DS, Sivakumar V, et al. RelB is required for Peyer's patch development:differential regulation of p52-RelB by lymphotoxin and TNF. EMBO J, 2003; 22, 121-30. doi:  10.1093/emboj/cdg004
[18] Randall TD, Carragher DM, and Rangel-Moreno J. Development of secondary lymphoid organs. Annu Rev Immunol, 2008; 26, 627-50. doi:  10.1146/annurev.immunol.26.021607.090257
[19] Sul HS. Minireview:Pref-1:role in adipogenesis and mesenchymal cell fate. Mol Endocrinol, 2009; 23, 1717-25. doi:  10.1210/me.2009-0160
[20] Fletcher AL, Acton SE, Knoblich K. Lymph node fibroblastic reticular cells in health and disease. Nat Rev Immunol, 2015; 15, 350-61. doi:  10.1038/nri3846
[21] Bistrup A, Tsay D, Shenoy P, et al. Detection of a sulfotransferase (HEC-GlcNAc6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates:relationship to the MECA-79 epitope. Am J Pathol, 2004; 164, 1635-44. doi:  10.1016/S0002-9440(10)63722-4
[22] Cupedo T, Jansen W, Kraal G, et al. Induction of secondary and tertiary lymphoid structures in the skin. Immunity, 2004; 21, 655-67. doi:  10.1016/j.immuni.2004.09.006
[23] Ansel KM, Ngo VN, Hyman PL, et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature, 2000; 406, 309-14. doi:  10.1038/35018581
[24] Bajenoff M, Egen JG, Koo LY, et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity, 2006; 25, 989-1001. doi:  10.1016/j.immuni.2006.10.011
[25] Pereira JP, Kelly LM, Cyster JG. Finding the right niche:B-cell migration in the early phases of T-dependent antibody responses. Int Immunol, 2010; 22, 413-9. doi:  10.1093/intimm/dxq047
[26] Link A, Vogt TK, Favre S, et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat Immunol, 2007; 8, 1255-65. doi:  10.1038/ni1513
[27] Malhotra D, Fletcher AL, Turley SJ. Stromal and hematopoietic cells in secondary lymphoid organs:partners in immunity. Immunol Rev, 2013; 251, 160-76. doi:  10.1111/imr.2012.251.issue-1
[28] Schulz O, Hammerschmidt SI, Moschovakis GL, et al. Chemokines and Chemokine Receptors in Lymphoid Tissue Dynamics. Annu Rev Immunol, 2016; 34, 203-42. doi:  10.1146/annurev-immunol-041015-055649
[29] Girard JP, Moussion C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol, 2012; 12, 762-73. doi:  10.1038/nri3298
[30] Bluher M, Mantzoros CS. From leptin to other adipokines in health and disease:facts and expectations at the beginning of the 21st century. Metabolism, 2015; 64, 131-45. doi:  10.1016/j.metabol.2014.10.016
[31] Batra A, Okur B, Glauben R, et al. Leptin:a critical regulator of CD4+ T-cell polarization in vitro and in vivo. Endocrinology, 2010; 151, 56-62. doi:  10.1210/en.2009-0565
[32] Grases-Pinto B, Abril-Gil M, Rodriguez-Lagunas MJ, et al. Leptin and adiponectin supplementation modifies mesenteric lymph node lymphocyte composition and functionality in suckling rats. Br J Nutr, 2018; 119, 486-95. doi:  10.1017/S0007114517003786