[1] Kantar C, Cetin Z, Demiray H. In situ stabilization of chromium (Ⅵ) in polluted soils using organic ligands:The role of galacturonic, glucuronic and alginicacids. Hazard Mater, 2008; 159, 287-93. doi:  10.1016/j.jhazmat.2008.02.022
[2] Jha MK, Kumar V, Bagchi D, et al. Processing of rayon waste effluent for the recovery of zinc and separation of calcium using thiophosphinic extractant. Hazard Mater, 2007; 145, 221-6. doi:  10.1016/j.jhazmat.2006.11.015
[3] Aliane A, Bounatiro N, Cherif AT, et al. Removal of chromium from aqueous solution by complexation-ultra filtration using a water-soluble macroligand. Water Res, 2001; 35, 2320-6. doi:  10.1016/S0043-1354(00)00501-7
[4] Gheju M, Balcu I. Removal of chromium from Cr(Ⅵ) polluted wastewaters by reduction with scrap iron and subsequent precipitation of resulted cations. Hazard Mater, 2011; 196, 131-8. doi:  10.1016/j.jhazmat.2011.09.002
[5] Rengaraj S, Yeon KH, Moon SH. Removal of chromium from water and wastewater by ion exchange resins. Hazard Mater, 2001; 87, 273-87. doi:  10.1016/S0304-3894(01)00291-6
[6] Guan X, Chang J, Chen Y, et al. A magnetically-separable Fe3O4 nanoparticle surface grafted with polyacrylic acid for chromium(Ⅲ) removal from tannery effluents. RSC Advances, 2015; 5, 50126-36. doi:  10.1039/C5RA06659J
[7] Luther S, Brogfeld N, Kim J, et al. Study of the Thermodynamics of Chromium(Ⅲ) and Chromium(Ⅵ) Binding to Fe3O4 and MnFe2O4 nanoparticles. Colloid Interface Sci, 2013; 400, 97-103. doi:  10.1016/j.jcis.2013.02.036
[8] Tang SC, Lo IM. Magnetic nanoparticles:Essential factors for sustainable environmental applications. Water Res, 2013; 47, 2613-32. doi:  10.1016/j.watres.2013.02.039
[9] Guan X, Yan S, Zeng Q, et al. Polyacrylic acid-grafted magnetite nanoparticles for remediation of Pb(Ⅱ)-contained water. Fiber Polym, 2016; 17, 1131-9. doi:  10.1007/s12221-016-6529-1
[10] Shen YF, Tang J, Nie ZH, et al. Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Sep Purif Technol, 2009; 69, 312-9.
[11] Chen Z, Wang Y, Zhuo L, et al. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration. Nanomedicine, 2015; 11, 1633-42. doi:  10.1016/j.nano.2015.06.002
[12] Wang Y, Yuan L, Yao C, et al. A combined toxicity study of zinc oxide nanoparticles and vitamin C in food additives. Nanoscale, 2014; 6, 15333-42. doi:  10.1039/C4NR05480F
[13] Sahu BD, Koneru M, Bijargi SR, et al. Chromium-induced nephrotoxicity and ameliorative effect of carvedilol in rats:Involvement of oxidative stress, apoptosis and inflammation. Chem Biol Interact, 2014; 223, 69-79. doi:  10.1016/j.cbi.2014.09.009
[14] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev, 2008; 108, 2064-110. doi:  10.1021/cr068445e
[15] van Engeland M, Ramaekers FC, Schutte B, et al. A novel assay to measure loss of plasma membrane asymmetry during apoptosis of adherent cells in culture. Cytometry, 1996; 24, 131-9. doi:  10.1002/(ISSN)1097-0320
[16] Auffan M, Rose J, Bottero JY, et al. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotech, 2009; 4, 634-41. doi:  10.1038/nnano.2009.242
[17] Dwivedi S, Alkhedhairy AA, Ahamed M, et al. Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment:A Novel Se-Bioassay. PLOS ONE, 2013; 8, e57404. doi:  10.1371/journal.pone.0057404
[18] Wahab R, Khan ST, Dwivedi S, et al. Effective inhibition of bacterial respiration and growth by CuO microspheres composed of thin nanosheets. Colloid Surface B, 2013; 111, 211-7. doi:  10.1016/j.colsurfb.2013.06.003
[19] Sigh BR, Dwivedi S, Al-Khedhairy AA, et al. Synthesis of stable cadmium sulfide nanoparticles using surfactin produced by Bacillus amyloliquifaciens strain KSU-109. Colloid Surface B, 2011; 85, 207-13. doi:  10.1016/j.colsurfb.2011.02.030
[20] Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol, 2011; 85, 743-50. doi:  10.1007/s00204-010-0545-5
[21] Kim S, Choi JE, Choi J, et al. Oxidative stress dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol in Vitro, 2009; 23, 1076-84. doi:  10.1016/j.tiv.2009.06.001
[22] Culcasi M, Benameur L, Mercier A, et al. EPR spin trapping evaluation of ROS production in human fibroblasts exposed to cerium oxide nanoparticles:Evidence for NADPH oxidase and mitochondrial stimulation. Chem Biol Interact, 2012; 199, 161-76. doi:  10.1016/j.cbi.2012.08.007
[23] Benameur L, Auffan M, Cassien M, et al. DNA damage and oxidative stress induced by CeO2 nanoparticles in human dermal fibroblasts:Evidence of a clastogenic effect as a mechanism of genotoxicity. Nanotoxicology, 2014; 9, 696-705.
[24] Zhu MT, Wang Y, Feng WY, et al. Oxidative Stress and Apoptosis Induced by Iron Oxide Nanoparticles in Cultured Human Umbilical Endothelial Cells. J Nanosci Nanotechno, 2010; 10, 8584-90. doi:  10.1166/jnn.2010.2488
[25] Naqvi S, Samim M, Abdin M, et al. Concentration-dependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed, 2010; 16, 983-9.
[26] Peralta-Videa JR, Zhao L, Lopez-Moreno ML, et al. Nanomaterials and the environment:a review for the biennium 2008-2010. Hazard Mater, 2011; 186, 1-15. doi:  10.1016/j.jhazmat.2010.11.020
[27] Schulze E, Ferrucci JT Jr, Poss K, et al. Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest Radiol, 1995; 10, 604-10. https://www.researchgate.net/publication/14642026_Cellular_Uptake...
[28] Daldrup-Link HE, Rudelius M, Oostendorp RA, et al. Targeting of hematopoietic progenitor cells with M R contrast agents, Radiology, 2003; 28, 760-7.
[29] Hoet P, Boczkowski J. What's new in Nanotoxicology? Brief review of the 2007 literature. Nanotoxicology, 2009; 2, 171-86.
[30] Schiavon M, PilonSmits EA, Wirtz M, et al. Interactions between chromium and sulfur metabolism in Brassica juncea. J. Environ. J Environ Qual, 2008; 37, 1536-45. doi:  10.2134/jeq2007.0032
[31] Gangwar S, Singh VP. Indole acetic acid differently changes growth and nitrogen metabolism in Pisumsativum L. seedlings under chromium (Ⅵ) phytotoxicity:Implication of oxidative stress. Sci HorticAmst, 2011; 129, 321-8. doi:  10.1016/j.scienta.2011.03.026
[32] Moore MN. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment. Environ Int, 2006; 32, 967-76. doi:  10.1016/j.envint.2006.06.014
[33] Heike H, Dana K, Annegret P, et al. Evaluating the cytotoxicity of palladium/magetitenano-catalysts intended for wastewater treatment. Environ Pollut, 2010; 158, 65-73. doi:  10.1016/j.envpol.2009.08.021
[34] Chithrani BD, Chan WCW. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett, 2007; 7, 1542-50. doi:  10.1021/nl070363y
[35] Peckys DB, de Jonge N. Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett, 2011; 11, 1733-8. doi:  10.1021/nl200285r
[36] Jiang XM, Foldbjerg R, Miclaus T, et al. Multi-platform genotoxicity analysis of silver nanoparticles in the model cell line CHO-K1. Toxicol Lett, 2013; 222, 55-63. doi:  10.1016/j.toxlet.2013.07.011
[37] Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small, 2008; 4, 26-49. doi:  10.1002/(ISSN)1613-6829