[1] Shankland K, Armitage JO, Hancock BW. Non-Hodgkin lymphoma. Lancet, 2012; 380, 848-57. doi:  10.1016/S0140-6736(12)60605-9
[2] Ansell SM. Non-Hodgkin Lymphoma:Diagnosis and Treatment. Mayo Clin Proc, 2015; 90, 1152-63. doi:  10.1016/j.mayocp.2015.04.025
[3] Martelli M, Ferreri AJ, Agostinelli C, et al. Diffuse large B-cell lymphoma. Crit Rev Oncol Hematol, 2013; 87, 146-71. doi:  10.1016/j.critrevonc.2012.12.009
[4] Pasqualucci L, Dalla-Favera R. The genetic landscape of diffuse large B-cell lymphoma. Semin Hematol, 2015; 52, 67-76. doi:  10.1053/j.seminhematol.2015.01.005
[5] Sandoval-Sus JD, Chavez J, Dalia S. A new therapeutic era in GCB and ABC Diffuse large B-cell lymphoma molecular subtypes:a cell of origin driven review. Curr Cancer Drug Targets, 2016; 16, 305-22. doi:  10.2174/1568009615666151030102539
[6] Sweetenham JW. Following aggressive B-cell lymphoma. Blood, 2015; 125, 3673-74. doi:  10.1182/blood-2015-04-641738
[7] Dunleavy K. Aggressive B cell Lymphoma:Optimal Therapy for MYC-positive, Double-Hit, and Triple-Hit DLBCL. Curr Treat Options Oncol, 2015; 16, 58. doi:  10.1007/s11864-015-0374-0
[8] Iioka F, Izumi K, Kamoda Y, et al. Outcomes of very elderly patients with aggressive B-cell non-Hodgkin lymphoma treated with reduced-dose chemotherapy. Int J Clin Oncol, 2016; 21, 498-505. doi:  10.1007/s10147-015-0912-6
[9] Lyman GH, Crawford J, Tomita D, et al. Changing patterns of chemotherapy relative dose intensity and supportive care for aggressive B-cell non-Hodgkin lymphoma. Leuk Lymphoma, 2015; 1-8. https://iths.pure.elsevier.com/en/publications/changing-patterns-of-chemotherapy-relative-dose-intensity-and-sup
[10] Nannya Y, Goto N, Shimizu M, et al. Efficacy of rituximab maintenance therapy for aggressive B-cell lymphoma depends on use of rituximab in induction therapy:a meta-analysis of randomized controlled trials. Haematologica, 2015; 100, e519-20. doi:  10.3324/haematol.2015.136622
[11] Omry-Orbach G. Risk Stratification in Differentiated Thyroid Cancer:An Ongoing Process. Rambam Maimonides Med J, 2016; 7. https://www.researchgate.net/publication/292212581_Risk_Stratification_in_Differentiated_Thyroid_Cancer_An_Ongoing_Process/fulltext/56ac2b2308ae43a39809dcbb/292212581_Risk_Stratification_in_Differentiated_Thyroid_Cancer_An_Ongoing_Process.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
[12] Roy P, Chan SM, Ng V, et al. Risk Stratification of Patients With Early Breast Cancer. Clin Breast Cancer, 2014; 14, 68-73. doi:  10.1016/j.clbc.2013.09.005
[13] De Donk NWCJV, Sonneveld P. Diagnosis and Risk Stratification in Multiple Myeloma. Hematol Oncol Clin North Am, 2014; 28, 791. doi:  10.1016/j.hoc.2014.06.007
[14] Tuomi T, Pasanen A, Luomaranta A, et al. Risk-stratification of endometrial carcinomas revisited:a combined preoperative and intraoperative scoring system for a reliable prediction of an advanced disease. Gynecol Oncol, 2015; 137, 23-7. https://www.researchgate.net/profile/Anna_Luomaranta/publication/271772309_Risk-stratification_of_endometrial_carcinomas_revisited_A_combined_preoperative_and_intraoperative_scoring_system_for_a_reliable_prediction_of_an_advanced_disease/links/564d640808ae4988a7a442ca.pdf
[15] Vose JM. Mantle cell lymphoma:2015 update on diagnosis, risk-stratification, and clinical management. Am J Hematol, 2015; 90, 739-45. doi:  10.1002/ajh.v90.8
[16] A Factors. A predictive model for aggressive non-Hodgkin's lymphoma. The International Non-Hodgkin's Lymphoma Prognostic Factors Project. N Engl J Med, 1993; 329, 987-94. doi:  10.1056/NEJM199309303291402
[17] Sehn LH, Berry B, Chhanabhai M, et al. The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood, 2007; 109, 1857-61. doi:  10.1182/blood-2006-08-038257
[18] Zhou Z, Sehn LH, Rademaker AW, et al. An enhanced International Prognostic Index (NCCN-IPI) for patients with diffuse large B-cell lymphoma treated in the rituximab era. Blood, 2014; 123, 837-42. doi:  10.1182/blood-2013-09-524108
[19] Melchardt T, Troppan K, Weiss L, et al. A modified scoring of the NCCN-IPI is more accurate in the elderly and is improved by albumin and beta2 -microglobulin. Br J Haematol, 2015; 168, 239-45. doi:  10.1111/bjh.13116
[20] Troppan KT, Melchardt T, Deutsch A, et al. The significance of pretreatment anemia in the era of R-IPI and NCCN-IPI prognostic risk assessment tools:a dual-center study in diffuse large B-cell lymphoma patients. Eur J Haematol, 2015; 95, 538-44. doi:  10.1111/ejh.12529
[21] Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma. Blood, 2015; 126, 2193-201. doi:  10.1182/blood-2015-02-629600
[22] Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol, 2013; 14, 1014-22. doi:  10.1038/ni.2703
[23] Hanahan D, Weinberg RA. Hallmarks of cancer:the next generation. Cell, 2011; 144, 646-74. doi:  10.1016/j.cell.2011.02.013
[24] Carbone A, Tripodo C, Carlo-Stella C, et al. The role of inflammation in lymphoma. Adv Exp Med Biol, 2014; 816, 315-33. doi:  10.1007/978-3-0348-0837-8
[25] Bachy E, Coiffier B. Anti-PD1 antibody:a new approach to treatment of lymphomas. Lancet Oncol, 2014; 15, 7-8. doi:  10.1016/S1470-2045(13)70587-4
[26] Andorsky DJ, Yamada RE, Said J, et al. Programmed death ligand 1 is expressed by non-hodgkin lymphomas and inhibits the activity of tumor-associated T cells. Clin Cancer Res, 2011; 17, 4232-44. doi:  10.1158/1078-0432.CCR-10-2660
[27] Janakiram M, Pareek V, Cheng H, et al. Immune checkpoint blockade in human cancer therapy:lung cancer and hematologic malignancies. Immunotherapy, 2016; 8, 809-19. doi:  10.2217/imt-2016-0001
[28] Mahoney KM, Freeman GJ, McDermott DF. The Next Immune-Checkpoint Inhibitors:PD-1/PD-L1 Blockade in Melanoma. Clin Ther, 2015; 37, 764-82. doi:  10.1016/j.clinthera.2015.02.018
[29] Galdiero MR, Bonavita E, Barajon I, et al. Tumor associated macrophages and neutrophils in cancer. Immunobiology, 2013; 218, 1402-10. doi:  10.1016/j.imbio.2013.06.003
[30] Liang W, Ferrara N. The Complex Role of Neutrophils in Tumor Angiogenesis and Metastasis. Cancer Immunol Res, 2016; 4, 83-91. doi:  10.1158/2326-6066.CIR-15-0313
[31] Powell DR, Huttenlocher A. Neutrophils in the Tumor Microenvironment. Trends Immunol, 2016; 37, 41-52. doi:  10.1016/j.it.2015.11.008
[32] Yan M, Jurasz P. The role of platelets in the tumor microenvironment:From solid tumors to leukemia. Biochim Biophys Acta, 2016; 1863, 392-400. doi:  10.1016/j.bbamcr.2015.07.008
[33] Noble F, Hopkins J, Curtis N, et al. The role of systemic inflammatory and nutritional blood-borne markers in predicting response to neoadjuvant chemotherapy and survival in oesophagogastric cancer. Med Oncol, 2013; 30, 596. doi:  10.1007/s12032-013-0596-6
[34] Fiala O, Pesek M, Finek J, et al. Change in Serum Lactate Dehydrogenase Is Associated with Outcome of Patients with Advanced-stage NSCLC Treated with Erlotinib. Anticancer Res, 2016; 36, 2459-65. https://www.researchgate.net/publication/301732288_Change_in_Serum_Lactate_Dehydrogenase_Is_Associated_with_Outcome_of_Patients_with_Advanced-stage_NSCLC_Treated_with_Erlotinib
[35] Wang XL, Wang XL, He S. et al. Association of beta2-microglobulin with the prognosis of non-Hodgkin's lymphoma:a meta analysis. Int J Clin Exp Med, 2015; 8, 3992-9. https://www.researchgate.net/publication/278042039_Association_of_b2-microglobulin_with_the_prognosis_of_non-Hodgkin's_lymphoma_a_meta_analysis
[36] Kwok JC, Richardson DR. The iron metabolism of neoplastic cells:alterations that facilitate proliferation? Crit Rev Oncol Hematol, 2002; 42, 65-78. doi:  10.1016/S1040-8428(01)00213-X
[37] Plosker GL, Figgitt DP. Rituximab:a review of its use in non-Hodgkin's lymphoma and chronic lymphocytic leukaemia. Drugs, 2003; 63, 803-43. doi:  10.2165/00003495-200363080-00005
[38] Habermann TM, Weller EA, Morrison VA, et al. Rituximab-CHOP versus CHOP alone or with maintenance rituximab in older patients with diffuse large B-cell lymphoma. J Clin Oncol, 2006; 24, 3121-7. doi:  10.1200/JCO.2005.05.1003
[39] Keane C, Vari F, Hertzberg M, et al. Ratios of T-cell immune effectors and checkpoint molecules as prognostic biomarkers in diffuse large B-cell lymphoma:a population-based study. Lancet Haematol, 2015; 2, e445-55. doi:  10.1016/S2352-3026(15)00150-7
[40] Ho CL, Lu CS, Chen JH, et al. Neutrophil/Lymphocyte Ratio, Lymphocyte/Monocyte Ratio, and Absolute Lymphocyte Count/Absolute Monocyte Count Prognostic Score in Diffuse Large B-Cell Lymphoma:Useful Prognostic Tools in the Rituximab Era. Medicine, 2015; 94, e993. doi:  10.1097/MD.0000000000000993
[41] Westin JR, Fayad LE. Beyond R-CHOP and the IPI in large-cell lymphoma:molecular markers as an opportunity for stratification. Curr Hematol Malig Rep, 2009; 4, 218-24. doi:  10.1007/s11899-009-0029-y
[42] Blank C, Mackensen A. Contribution of the PD-L1/PD-1 pathway to T-cell exhaustion:an update on implications for chronic infections and tumor evasion. Cancer Immunol Immunother, 2007; 56, 739-45. doi:  10.1007/s00262-006-0272-1
[43] Balkwill F, Mantovani A. Inflammation and cancer:back to Virchow? Lancet, 2001; 357, 539-45. doi:  10.1016/S0140-6736(00)04046-0
[44] Catalano V, Turdo A, Di Franco S, et al. Tumor and its microenvironment:a synergistic interplay. Semin Cancer Biol, 2013; 23, 522-32. doi:  10.1016/j.semcancer.2013.08.007
[45] Kridel R, Steidl C, Gascoyne RD. Tumor-associated macrophages in diffuse large B-cell lymphoma. Haematologica, 2015; 100, 143-5. doi:  10.3324/haematol.2015.124008
[46] Nicholas NS, Apollonio B, Ramsay AG. Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta, 2016; 1863, 471-82. doi:  10.1016/j.bbamcr.2015.11.003
[47] Rosenquist R, Davi F, Ghia P. The microenvironment in lymphomas——dissecting the complex crosstalk between tumor cells and 'by-stander' cells. Semin Cancer Biol, 2014; 24, 1-2. doi:  10.1016/j.semcancer.2013.12.002
[48] Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis, 2015; 36, 1085-93. doi:  10.1093/carcin/bgv123
[49] Ribas A, Tumeh PC. The future of cancer therapy:selecting patients likely to respond to PD1/L1 blockade. Clin Cancer Res, 2014; 20, 4982-4. doi:  10.1158/1078-0432.CCR-14-0933
[50] Chen BJ, Chapuy B, Ouyang J, et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin Cancer Res, 2013; 19, 3462-73. doi:  10.1158/1078-0432.CCR-13-0855
[51] Gwak JM, Jang MH, Kim DI, et al. Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PloS One, 2015; 10, e0125728. doi:  10.1371/journal.pone.0125728
[52] Jensen TO, Schmidt H, Moller HJ, et al. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage Ⅰ/Ⅱ melanoma. J Clin Oncol, 2009; 27, 3330-7. doi:  10.1200/JCO.2008.19.9919
[53] Kong LQ, Zhu XD, Xu HX, et al. The clinical significance of the CD163+ and CD68+ macrophages in patients with hepatocellular carcinoma. PloS One, 2013; 8, e59771. doi:  10.1371/journal.pone.0059771
[54] Lissbrant IF, Stattin P, Wikstrom P, et al. Tumor associated macrophages in human prostate cancer:relation to clinicopathological variables and survival. Int J Oncol, 2000; 17, 445-51. http://www.spandidos-publications.com/ijo/17/3/445/abstract
[55] Li Z, Dong P, Ren M, et al. PD-L1 Expression Is Associated with Tumor FOXP3(+) Regulatory T-Cell Infiltration of Breast Cancer and Poor Prognosis of Patient. J Cancer, 2016; 7, 784-93. doi:  10.7150/jca.14549
[56] Saito T, Nishikawa H, Wada H. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med, 2016; 22, 679-84. doi:  10.1038/nm.4086
[57] Quigley DA, Kristensen V. Predicting prognosis and therapeutic response from interactions between lymphocytes and tumor cells. Mol Oncol, 2015; 9, 2054-62. doi:  10.1016/j.molonc.2015.10.003
[58] Rossi D, Fangazio M, De Paoli L, et al. Beta-2-microglobulin is an independent predictor of progression in asymptomatic multiple myeloma. Cancer, 2010; 116, 2188-200. http://www.bloodjournal.org/content/114/22/1796?sso-checked=true
[59] Kukulj S, Jaganjac M, Boranic M, et al. Altered iron metabolism, inflammation, transferrin receptors, and ferritin expression in non-small-cell lung cancer. Med Oncol, 2010; 27, 268-77. doi:  10.1007/s12032-009-9203-2
[60] Kwak B, Ozcelikkale A, Shin CS, et al. Simulation of complex transport of nanoparticles around a tumor using tumor-micro-environment-on-chip. J Control Release, 2014; 194, 157-67. doi:  10.1016/j.jconrel.2014.08.027