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Global Warming Hiatus* 
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Temperature is a crucial factor that affects 
influenza transmission. Therefore, several studies 
have correlated various aspects of influenza with 
temperature from the global warming period during 
which temperature exhibits a clear trend. The global 
warming hiatus has been existing since the year 
1998[1]. This provides an opportunity to investigate 
the effect of temperature on the transmission of 
influenza from the viewpoint that temperature is 
trendless. In fact, the relationship between 
temperature and influenza has not yet been clearly 
elucidated. In addition, there are no clear data 
regarding the relationship between temperature and 
other meteorological data; for example, humidity[2] 
has no clear trends as temperature and CO2 over 
either global warming or global warming hiatus. 
Therefore, it is possible to investigate the effect of 
temperature on the transmission of influenza during 
the global warming hiatus without including the 
factors that do not demonstrate any noticeable 
difference between global warming and global 
warming hiatus. 

Temperature data were obtained from the CRU 
TS dataset[3]. A total of 815,288 surveillance samples 
were obtained from the Influenza Research 
Database at http://www.fludb.org; and grouped 
according to avian, human, animal and 
environmental[4] data (Supplementary Table S1, 
available in www.besjournal.com). Each sample was 
mapped from its location to its geographic longitude 
and latitude to determine its monthly temperature 
in the CRU TS dataset. The percentage [positive 
samples/(positive samples + negative samples)%] 
was used to present the data. When both positive 
and negative samples were recorded at the same 
location, the temperature difference (°C) was 
calculated between the positive and negative 
samples. 

Statistical comparisons of local temperature 
between the positive and negative samples were 
conducted using parametric (Student’s t-test) and 
nonparametric statistics (Mann-Whitney U-test) 
after determining the sample distribution by the 
Kolmogorov-Smirnov test. One-way ANOVA and the 
Kruska-Wallis one-way ANOVA were used 
accordingly. P < 0.05 was considered for statistical 
significance. For positive samples, between-year and 
within-year variations were calculated for the 
temperature and influenza percentage using the 
single classification model II ANOVA with unequal 
sample sizes. 

Cross-impact analysis was used to determine the 
probability of how fluctuating temperature affects 
on influenza A status[5]. Because of uncertainty in the 
rise or fall of temperature and uncertainty of 
influenza A infection in an individual species, two 
probabilistic events were defined, and their 
probabilities and consequently conditional 
probabilities were calculated (Supplementary Figure 
S1, available in www.besjournal.com). 

Some studies have been conducted to establish 
the relationship between influenza outbreaks and 
meteorological factors[6], topographical factors, 
human population density, and poultry density[7]. 
However, no studies have yet evaluated the 
point-to-point relationship of geographic location 
between temperature and flu surveillance at a global 
scale, and the impact of temperature on influenza A 
infection in terms of probability. 

Wild birds are considered as the primary 
transmission hosts for influenza virus[8], and thus 
avian data contribute the largest proportion 
(605,473/815,288 = 74.26%) of surveillance data. 
Figure 1 depicts the yearly percentage of positive 
samples (upper panel) and the temperature 
difference between the positive and negative 
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samples in each continent over time (lower panel). 
In the upper panel of Figure 1, the curves do not 
synchronize their peaks and troughs over time, i.e. 
each continent has its own pattern for the 
percentage of positive samples from 2007 to 2016. 
For example, Europe has two peaks in 2012 and 
2014, whereas South America has just one peak in 
2014. This difference can be due to different 
seasonalities between the Northern and Southern 
Hemispheres and different species (Supplementary 
Table S2, available in www.besjournal.com). 

As shown in the lower panel of Figure 1, when 
the relationship of temperature with positive 
samples is higher than that with negative samples, 
then the curve is above the horizontal-dotted line; 
otherwise, the curve is below the horizontal-dotted 
line. For example, the temperature difference in 
2014 is 2.72 °C in Asia but -7.05 °C in Africa. Except 
for Africa and Oceania, the general pattern is that 
the positive samples are more likely to be obtained 
at a higher temperature rather than at a lower 
temperature. For Africa, its percentage of positive 
samples in the upper panel has three peaks, whereas 
the remaining continents generally have two peaks. 
Temperature difference in the lower panel indicated 
positive samples at lower temperatures but negative 
samples at higher temperatures because its curve is 
below the horizontal-dotted line with a deep trough 
in 2014. For Asia, its percentage of positive samples 
 

 
Figure 1. Yearly percentage of positive avian 
samples in each continent over time (upper 
panel) and the temperature difference 
between the temperature (°C), at which the 
samples were positive, and the temperature 
(°C), at which the samples were negative, in 
each continent over time (lower panel). To 
avoid overlaps in the graph, only mean value 
is presented. 

in the upper panel increased over time, but its 
temperature difference showed a decreasing trend 
over time. For Europe, its percentage of positive 
samples in the upper panel has two peaks, whereas 
its temperature difference in the lower panel does 
no show a clear trend. For North America, both the 
percentage of positive samples in the upper panel 
and the temperature in the lower panel show a 
similar increasing trend over time. Indeed, this trend 
holds for both temperatures relating to positive and 
negative samples. For Oceania, there is a single peak 
in the upper panel and a single trough in the lower 
panel. Its temperature for negative samples was 
almost constant, but its temperature for positive 
samples decreased sharply in 2010 and 2011, leading 
to a peak in the upper panel but a trough in the 
lower panel. For South America, there are two peaks 
in both the upper and lower panels. Similar to the 
phenomenon that occurred in the Southern 
Hemisphere, there was a yearlong difference 
between the upper and lower panels. Both 
temperatures relating to positive and negative 
samples were decreasing over time. 

In general, the temperature showed 1.5%-4.5% 
between-year variations and 95.5%-98.5% 
within-year variations (Supplementary Table S3, 
available in www.besjournal.com). However, the 
positive avian samples showed 7.7%-31.4% 
between-year and 68.6%-92.3% within-year 
variations (Supplementary Table S4, available in 
www.besjournal.com). Because of global warming 
hiatus, we could directly extrapolate from the 
relationship between the upper and lower panels in 
Figure 1 into Supplementary Figure S2 (available in 
www.besjournal.com) with yearly and monthly 
percentages of positive samples to explore the 
relationship between the temperatures relating to 
positive and negative samples. Supplementary 
Figure S3 (available in www.besjournal.com) depicts 
the percentage of positive avian samples in each 
continent in each month (upper panel) and the 
temperature difference between the positive and 
negative samples in each continent in each month 
(lower panel). 

 The disease reservoir of nonhuman 
mammalians contributes 24.38% (198,734/815,288) 
of surveillance data, and whereas that of swine 
accounts for 91.39% (181,614/198,734), therefore, 
the data from swine would weigh heavily on the 
nonhuman mammalian data. We present the 
analyses similar to avian surveillance data in 
Supplementary Figure S4 (available in 
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www.besjournal.com). We also applied the 
cross-impact analysis to the surveillance data on 
swine from China and USA to further explore how 
temperature affects influenza A status in swine 
(Supplementary Figure S5A, available in 
www.besjournal.com) with the aim of determining 
the probability that an individual species gets 
infected with influenza A with temperature change 
P(1) and other conditional probabilities 
(Supplementary Table S5, available in 
www.besjournal.com). 

 Figure 2 displays the probability of being 
infected with influenza A in swine from USA and 
China when the temperature changes using the 
cross-impact analysis. The symbols representing 
swine from China are concentrated in a small area, 
because 89,891 swine samples were obtained 
exclusively from Hong Kong, Guangdong and 
Guangxi (98.82%). The temperature in these areas 
does not change in a very large range, so most of the 
symbols, except symbol 2016, do not have several 
changes along the y-axis direction, i.e. the 
probability of being infected with influenza A does 
not change much when the temperature changes so 
little. The inclusion of symbol 2016 leads to the 
conclusion that the decrease in temperature would 
slightly increase the probability of being infected. In 
contrast, the symbols from USA include 63,559 
swine samples from 18 states (Supplementary Table 
S5). Therefore, these surveillance data are more 
meaningful. The regression line clearly indicates the 
 

 
Figure 2. Probability of being infected with 
influenza when the temperature (°C) changes 
in swine from USA and China. Each symbol 
presents the average yearly temperature (°C) 
along the x-axis, and the probability of being 
infected with influenza when the 
temperature (°C) changes along the y-axis. 
Samples from China in 2012 are not included 
because data were available only for 3 
months. 

tendency that the higher the average yearly 
temperature, the larger the probability of being 
infected with influenza A. In Figure 2, the 
cross-impact analysis illustrates that the localized 
swine samples from China have a different trend 
from the trend produced by the unlocalized swine 
samples from USA. Precisely, the monthly 
percentage of positive influenza A samples in the 
tropical, and subtropical countries and temperate 
regions[9] follows the trend observed in Shantou, 
China, as shown in Figure 2 in this study. 

The final natural reservoir is humans in the 
surveillance data. At the global level, by combining 
all the human surveillance data from all the 
continents over these years, the temperature for the 
positive samples is 11.07 ± 10.35 °C (mean ± SD, n = 
3,567), and that for the negative samples is 22.37 ± 
6.7 °C (mean ± SD, n = 7,644), and their statistical 
comparison was highly significant (P < 0.001). This 
comparison result is consistent with our common 
knowledge that influenza is more likely to occur in 
winter. The data in Shantou, Guangdong, China, and 
in USA are highly comprehensive. Supplementary 
Figures S6 (available in www.besjournal.com) depict 
the positive and negative human samples from 
Shantou, Guangdong, China, and USA with respect to 
temperature changes over time, gender, and patient 
age, respectively. Collectively, these three figures 
demonstrate the presence of temperature 
difference between positive and negative samples. 

 Figure 3 elaborates the yearly average 
temperature versus the probability of being infected 
with influenza A when the temperature changes for 
the USA populations at different ages according to 
the cross-impact analysis. In this dataset, there were 
1,839 patients whose age ranged from 0.6 to 97.0 
years from 2008 to 2014, so that there were not many 
samples in each year for each age group. When an 
individual visited a physician, the temperature was 
recorded, and the recorded temperatures were 
averaged in each age group over years. Each green 
circle represents the average temperature, e.g., the 
average temperature was 3.35 °C for the 0 to 3 year 
age group, 5.21 °C for the 3 to 10 year age group, 
and so on. The red triangle represents the 
probability of being infected with influenza A when 
the temperature changes for each age group. 
Combined with green circles, we can obtain the 
probability of being infected with influenza A when 
the temperature changes. These probabilities are 
quite large, but reasonable because the surveillance 
data were obtained from clinical metadata, the samples 
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Figure 3. Yearly average temperature versus 
probability of being infected with influenza 
when the temperature changes for the USA 
populations with different ages. 

 
were from patients who visited physicians with 
influenza A symptoms, and their flu-positive samples 
were examined for the virus. However, the curves 
shown in Figure 3 are highly meaningful because the 
red line suggests that the higher the age, the larger the 
probability to be infected with influenza A when the 
temperature changes. 

Infectious pathogens under climate changes 
present challenges to human health[10]. In this study, 
815,288 surveillance samples deposited in a global 
database were analyzed to determine the effect of 
temperature change on influenza A infection. The 
results indicate clear evidence that the percentage 
of positive influenza A samples is 
temperature-dependent based on avian, nonhuman 
mammalian and human yearly and monthly 
surveillance data. The probability that a swine gets 
influenza A infection when the temperature changes 
increases with increase in the yearly average 
temperature in USA. The probability that an 
individual gets influenza A infection when the 
temperature changes increases with increase in the 
population age based on USA surveillance data. This 
study fills the knowledge gap of how the 
temperature from the global warming hiatus affects 
influenza A infection.  
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Supplementary Table S1. Surveillance Data Characteristics 
Host Continent Samples Countries Species Years 

Avian Africa 72,822 13 251 2008 to 2016 

 Asia 236,740 14 382 2008 to 2016 

 Europe 95,573 10 320 2007 to 2016 

 North America 150,094 3 323 2007 to 2016 

 Oceania 2,947 2 48 2008 to 2013 

 Central and South America 47,168 4 226 2008 to 2016 

Nonhuman  Africa 6,743 8 9 2009 to 2014 

mammalian Asia 114,162 6 51 2008 to 2016 

 Europe 453 2 2 2009 to 2017 

 North America 71,682 3 39 2002 to 2016 

 Central and South America 5,694 6 6 2003 to 2015 

Human  11,210 12  2008 to 2014 

Supplementary Table S2. Different Species Contributing to Figure 1 
Host Africa (%) Asia (%) Europe (%) North America (%) South America (%) Oceania (%) 

Domestic chicken 81.19 28.5   31.03 13.67 

Duck 5.01 24.39   4.13  

Chicken  3.39     

Environment  23.32  4.86 44.99  

Mallard   42.69 22.17   

Black-headed gull   10.22    

Greater white-fronted 
Goose 

  8.76    

Eurasian wigeon   7.1    

Barnacle goose   3.95    

Swan goose   3.93    

Blue-winged teal    10.67   

Ruddy turnstone    5.97  12.11 

Pintail    5.87   

Glaucous-winged gull    5.21   

Grey teal      10.69 

Pink-eared duck      6.65 

Red-necked stint      5.23 

Cattle egret     4.68  

Total 85.2 79.60 76.65 54.75 84.83 48.35 

Supplementary Table S3. Between-year and Within-year Variations for Temperature, Where the Samples 
Were Obtained, Using the Single Classification Model II ANOVA with Unequal Sample Sizes 

Temperature Africa Asia Europe North America South America 

Between-year variation (%) 4.51 1.99 3.45 1.80 1.48 

Within-year variation (%) 95.49 98.01 96.55 98.2 98.52 

Supplementary Table S4. Between-year and Within-year Variations for Percentage of Positive Avian 
Samples Using the Single Classification Model II ANOVA with Unequal Sample Sizes 

Positive Samples Africa Asia Europe North America South America 

Between-year variation (%) 8.74 31.44 15.59 7.71 14.89 

Within-year variation (%) 91.26 68.56 84.41 92.29 85.11 
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Supplementary Table S5. Computation of Probabilities for Swine Samples Obtained in 2008 in China 
According to the Cross-Impact Relationship in Figure S1 

Probability Computation Value 

P(2) 1260/2646 0.476 

P(૛ഥ) 1 – P(2) = 1 – 0.476 or 1386/2646 0.524 

P(1|૛ഥ) 5/1386 0.004 

P(૚ഥ|૛ഥ) 1 – P(1|2ത) = 1 – 0.004 or 1381/1386 0.996 

P(1|2) 13/1260 0.010 

P(૚ഥ|2) 1 – P(1|2) = 1 – 0.010 or 1247/1260 0.090 

P(1૛ഥ) P(1|2ത) × P(2ത) = 5/1386 × 1386/2646 = 5/2646 0.002 

P(૚ഥ૛ഥ) P(1ത|2ത) ×P(2ത) = 1381/1386 × 1386/2646 = 1381/2646 0.522 

P(12) P(1|2) × P(2) = 13/1260 × 1260/2646 = 13/2646 0.005 

P(૚ഥ2) P(1ത|2) × P(2) = 1247/1260 × 1260/2646 = 1247/2646 0.471 

P(2|1) 13/(5 + 13) 0.722 

Supplementary Table S6. Distribution of 63559 Swine Samples from USA 
State Swine Samples (%) 

Colorado 0.296 

Georgia 6.743 

Illinois 16.226 

Indiana 16.772 

Iowa 15.759 

Kentucky 1.407 

Michigan 0.407 

Minnesota 8.205 

Missouri 0.318 

Nebraska 9.050 

NorthCarolina 6.388 

Ohio 7.742 

Oklahoma 8.745 

Pennsylvania 0.009 

SouthCarolina 0.208 

SouthDakota 1.317 

Texas 0.315 

WestVirginia 0.094 

 

  



Biomed Environ Sci, 2019; 32(7): S1-S5 S3 

 

Supplementary Figure S1. Cross-impact relationship between temperature change and influenza A 
status. 

 

Supplementary Figure S2. Yearly (A) and Monthly (B) percentage of positive avian samples versus 
temperature difference (°C) between positive and negative samples. To avoid overlaps in graph, only 
means are presented. 
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Supplementary Figure S3. Percentage of positive avian samples in each continent in each month (mean 
± SD, upper panel) and temperature difference (°C) between positive and negative samples, in each 
continent in each month (mean ± SD, lower panel). *, and #, statistical difference between May     
and October in Europe and between August and January, February, March, April, June in North America 
at P < 0.05 level. 

 

Supplementary Figure S4. Yearly percentage of positive samples from non-human mammalians. (A) in 
each continent over time (upper panel) and temperature difference between the temperature (°C), at 
which samples were positive, and the temperature (°C), at which samples were negative, in each 
continent over time (lower panel). (B) versus temperature difference (°C) between positive and 
negative samples. To avoid overlaps in graph, only mean is presented. 
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Supplementary Figure S5. Temperature of positive and negative human samples from Shantou, 
Guangdong, China and USA over time (A), with respect to gender (B), with respect to patients’ age (C). 

 




