
 

Original Article

Metabolomic Profiling Differences among Asthma,
COPD, and Healthy Subjects: A LC-MS-based
Metabolomic Analysis*

LIANG Ying1,&, GAI Xiao Yan1,&, CHANG Chun1,#, ZHANG Xu2, WANG Juan3, and LI Ting Ting4

1. Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing 100191, China;
2. Tianjin  Key  Lab.  of  Metabolic  Diseases  and  Department  of  Physiology,  Tianjin  Medical  University,  Tianjin
300070,  China;  3. Lab.  of  Respiratory  Disease,  Peking  University  Third  Hospital,  Beijing  100191,  China;
4. Department  of  Biomedical  Informatics,  School  of  Basic  Medical  Sciences,  Peking  University  Health  Science
Centre, Beijing 100191, China

Abstract

Objective    Asthma and chronic obstructive pulmonary disease (COPD) feature different inflammatory
and  cellular  profiles  in  the  airways,  indicating  that  the  cellular  metabolic  pathways  regulating  these
disorders are distinct.

Methods     We  aimed  to  compare  the  serum  metabolomic  profiles  among  mild  persistent  asthmatic
patients,  individuals  with  stable  COPD,  and  healthy  subjects  and  to  explore  the  potential  metabolic
biomarkers and pathways. The serum metabolomic profiles of 17 subjects with mild persistent asthma,
17 subjects with stable COPD, and 15 healthy subjects were determined by an untargeted metabolomic
analysis utilizing liquid chromatography-mass spectrometry. A series of multivariate statistical analyses
was subsequently used.

Results     Multivariate  analysis  indicated  a  distinct  separation  between  the  asthmatic  patients  and
healthy controls in electrospray positive and negative ions modes, respectively. A total of 19 differential
metabolites  were  identified.  Similarly,  a  distinct  separation  between  asthma  and  COPD  subjects  was
detected  in  the  two  ions  modes.  A  total  of  16  differential  metabolites  were  identified.  Among  the
identified  metabolites,  the  serum  levels  of  hypoxanthine  were  markedly  higher  in  asthmatic  subjects
compared with those in COPD or healthy subjects.

Conclusions    Patients  with asthma present a  unique serum metabolome, which can distinguish them
from  individuals  with  COPD  and  healthy  subjects.  Purine  metabolism  alteration  may  be  distinct  and
involved in the pathogenesis of asthma.
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INTRODUCTION

A sthma is a disease that affects 1%-18% of
the human population worldwide. Asthma
is  heterogeneous  and  characterized  by

various  symptoms  and  reversible  expiratory  airflow
limitation[1,2].  Given  the  heterogeneity  of  underlying
pathogenesis  and  variety  of  respiratory  symptoms,
the  early  diagnosis  and  management  of  asthma  are
considerably  difficult,  notably  in  asthmatic
children[3,4].  Chronic  obstructive  pulmonary  disease
(COPD)  is  another  common  chronic  respiratory
disease  characterized  by  persistent  respiratory
symptoms  and  irreversible  airflow  limitation[5,6].  In
clinical practice, differential diagnosis between these
diseases  is  sometimes  difficult  due  to  the  similar
clinical  presentations  and  lung  function  test
results[7].

The pathogenesis and pathology of asthma differ
from  those  of  COPD,  involving  the  different
inflammatory  cells  and  inflammatory  mediators  in
the  airways[8].  COPD  is  characterized  by  the
increased number of macrophages in the peripheral
airways,  lung  parenchyma,  pulmonary  vessels,  and
activated  neutrophils  and  lymphocytes,  such  as  T-
helper  (Th)  1  and  Th17  cells[6].  Asthma  is
characterized  by  the  increased  number  of  activated
eosinophils,  mast  cells,  and  Th2  lymphocytes  in  the
airways,  together  with  the  increased  levels  of
inflammatory  mediators,  such  as  interleukin-4  and
5[1]. The diagnosis of asthma or COPD is mainly based
on  patient  clinical  symptoms  and  spirometry
function  testing.  Invasive  diagnostic  methods,
including  bronchoscopy  and  surgery,  can  improve
the  diagnostic  accuracy[9] but  are  unnecessary  for
every  patient  due  to  their  invasive  characteristics.
Nevertheless,  non-invasive  diagnostic  approaches
that  can  be  used  to  distinguish  asthma  from  COPD
are still limited.

Metabolomics  is  the  comprehensive  assessment
of  low-molecular-weight  (<  1,000  Da)  endogenous
metabolites;  it  can reflect the biochemical  reactions
and  metabolic  changes  under  a  given  set  of
physiological  or  pathophysiological  conditions[10].
Endogenous  metabolites  include  a  wide  variety  of
small molecules, such as sugars, lipids, steroids, and
amino  acids[11].  These  metabolites  represent  the
functional  phenotypes  of  a  cell,  tissue,  or
organism[12].  Currently,  metabolomics,  which is  non-
invasive  and  can  be  applied  to  various  types  of
biological  fluids,  has  been  deemed  considerably
helpful  for  the  identification  of  metabolites  related
to  the  diagnosis  and  prognosis  of  diseases  and  can

provide  early  disease  detection  and  deep
understanding  of  disease  pathogenesis[13].  In  the
past  decade,  both mass  spectrometry  (MS)[14-17] and
nuclear  magnetic  resonance  (NMR)[18-24]-based
metabolomic  techniques  have  been  utilized  in  the
diagnosis of asthma and have demonstrated evident
metabolic  alterations  associated  with  the
pathogenesis of this disease. Moreover, our previous
pilot  study has shown that  serum metabolic  activity
is  significantly  altered  in  patients  with  mild
persistent  asthma  based  on  gas  chromatography
(GC) coupled with MS[25]. However, the differences in
metabolic  profiling  of  serum  samples  among
asthmatic,  COPD,  and  healthy  individuals  have  not
been  previously  studied  by  liquid  chromatography
(LC) coupled with MS methodologies. This innovative
method can provide the complementary detection of
high-molecular-weight  metabolites  with  poor
thermal  stability  that  cannot  be  detected  by  GC-
MS[26].

In the present study, we applied a LC-MS method
on  the  serum  samples  derived  from  patients  with
asthma  and  COPD  and  healthy  subjects  and
investigated  the  metabolomic  alteration  and
differences  among  these  groups.  We  hypothesized
that  the  metabolic  profiling  of  asthmatic  patients
differs  from  that  of  COPD  or  healthy  subjects  and
that  LC-MS-based metabolomic  analysis  could  assist
clinicians to distinguish asthma from COPD.

METHODS

Study Subjects

A  total  of  17  patients  with  mildly  persistent
asthma,  17  patients  with  stable  COPD,  and  15
healthy subjects were recruited from the respiratory
clinic  of  the  Peking  University  Third  Hospital
between January 2015 and December 2016. Asthma
was  diagnosed according  to  the  Global  Initiative  for
Asthma  guidelines.  COPD  was  diagnosed  according
to the Global  Initiative for  Chronic  Obstructive Lung
Disease  guidelines.  The  healthy  subjects  had  no
history or appearance of chronic respiratory diseases
or  other  diseases  that  might  influence  the  results.
The  subjects’ clinical  data,  including  demographic
characteristics,  tobacco  exposure,  blood  glucose,
blood  triglyceride  and  cholesterol,  and  spirometry
function,  were  collected.  These  data  were  analyzed
anonymously in our study.

The  exclusion  criteria  were  the  following:
subjects  with  airflow  limitation  diseases  other  than
asthma  or  COPD;  acute  exacerbation  of  asthma  or
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COPD  within  the  prior  four  weeks;  any  other  acute
infection  or  sepsis  within  the  same  time  period;
definite  neoplastic  diseases;  severe  trauma  or
surgery within the same time period.

All the study subjects participating in the present
study  had  provided  informed  consent  prior  to  data
collection.  The  present  study  was  performed  in
accordance  with  the  Declaration  of  Helsinki  (1964)
and  all  subsequent  revisions  and  approved  by  the
Ethics Committee of Peking University Third Hospital
(2014071).

Serum Sample Collection

To  avoid  and  minimize  the  variation  in  the
biochemical  parameters  due  to  circadian  rhythms,
blood  samples  were  collected  in  the  morning
between 8:00 AM and 10:30 AM following overnight
fasting (at least 8 h). Blood samples were transferred
into serum gel  tubes and gently  inverted twice.  The
samples  were  allowed  to  rest  at  room  temperature
for  30  min  until  complete  coagulation.  The  tubes
were centrifuged at 2,500 ×g for 15 min at 4 °C. The
serum  was  immediately  divided  into  aliquots,
transferred  in  cryovials,  and  stored  at  −80  °C  for
further analysis.

Statistical Analysis

The  demographic  characteristics  of  the  study
subjects  were  analyzed  by  the  SPSS  software
(version  19.0,  IBM,  Armonk,  NY,  USA).  Continuous
variables  were  expressed  as  mean  ±  standard
deviation,  and  categorical  variables  were  expressed
as  numbers.  The t-test  test  was  used  to  assess  the
differences  among  groups  considering  continuous
variables.  The  chi-squared  test  was  used  for
assessment  of  the  differences  in  categorical
variables.  The  results  were  considered  statistically
significant at P-values lower than 0.05 (P < 0.05).

LC-MS Analysis

Sample Preparation　　Each 100 μL aqueous serum
was  added  to  400  μL  methanol-acetonitrile  (1:1,
vol/vol)  solution  and  vortexed  for  30  s.  Following
incubation for  1  h  at  −20 °C,  the mixed sample  was
centrifuged  at  12,000  rpm  at  4  °C  for  15  min.
Subsequently,  400  μL  supernatant  was  isolated  and
evaporated  to  dryness  at  room  temperature.  The
dried  residue  was  reconstituted  in  100  μL
acetonitrile-H2O  (1:1,  vol/vol).  Following  sonication
for 10 min in a water bath and centrifugation for 15
min  at  12,000  rpm  at  4  °C,  the  supernatant  was
isolated  and  kept  at  −80  °C  prior  to  LC-MS analysis.
The  quality  control  (QC)  sample  was  derived  from

small aliquots of all the studied samples, which were
pooled and thoroughly mixed, and then processed in
the same way as the studied samples.
Detection  Platform  And  Validation　 　 LC-MS
analysis  was  performed  using  an  Agilent  1290
ultraperformance  liquid  chromatography  (UPLC)
system  (Agilent  Technologies,  Santa  Clara,  CA,  USA)
coupled  with  an  AB Triple  quadrupole  time-of-flight
5,600 mass spectrometer (AB SCIEX, Foster City, CA,
USA). The system utilized ACQUITY UPLC BEH Amide
(2.1  mm  ×  100  mm,  1.7  μm,  Waters,  USA)  as  the
chromatographic column.

A total of 10 μL of each reconstituted sample was
obtained  from  sample  vials,  which  were  stored  at
4  °C,  and  injected  onto  the  UPLC  column.
Chromatographic  separations  utilized  a  binary
mobile  phase  system  (phase  A:  water  containing
25  mmol/L  ammonium  acetate  and  25  mmol/L
ammonium  hydroxide;  phase  B:  acetonitrile).
Gradient  elution  was  performed  as  described  in
Supplementary  Table  1 (www.besjournal.com).  The
eluent from the column was directed to MS analysis
without  split.  The  QC  sample  was  injected  on  the
column randomly.  Six  replicates  of  QC  sample  were
used  for  the  evaluation  of  the  method
reproducibility.

An electrospray ionization source (ESI) operating
in  positive  and  negative  ion  modes  was  used  in  MS
analysis,  with  spraying  voltage  of  5.5  kV  for  ESI+
mode  and  of  −4.5  kV  for  ESI-  mode.  The  ionization
temperature  was  set  at  600  °C.  The  voltages  of
atomization  gas,  auxiliary  gas,  and  curtain  gas  were
set  at  60,  60,  and  35  psi,  respectively.  The
declustering potential was set at 60 V, and the range
of  collision  energy  was  set  at  35  ±  15  eV.  The  data
were collected in the centroid mode form with a m/z
range of 60 to 1,200.

LC-MS Data Analysis

Data  Pre-processing  And  QC　 　 The  analysis
conducted  in  49  serum  samples  resulted  in  the
detection of 16,262 peaks in the ESI+ mode, whereas
13,983  peaks  were  detected  in  the  ESI-mode.  The
open-source  XCMS  software  package  (Version
xcms4dda) was used to process raw data. The XCMS
settings  were  the  following:  S/N  threshold,  6;
accurate molecular weight deviation, 25; peak width,
5-30  s.  Following  the  acquisition  of  a  matrix,  the
metabolite  features  with  associated  retention  time
(RT), accurate mass, and chromatographic peak area
and  data  alignment  and  normalization  were
performed using QC samples. The metabolic features
with  poor  reproducibility  were  removed.
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Normalization  was  processed  by  the  total  ion
current.  The  total  area  normalization  method  was
performed  on  this  data  analysis  set.  The
reproducibility  of  the  method  was  assessed  by  the
internal  standard  response  stability,  the  dispersion
of QC samples in principal component analysis (PCA)
scatter  plot  (Supplementary  Figures  S1-S4 available
in www.besjournal.com), and the correlation among
the QC samples. Finally, 2,446 peaks were identified
in the ESI+ mode, and 1,761 peaks in the ESI-  mode
were reserved and subjected to further multivariate
analysis.
Multivariate  Analysis　 　 The  three-dimensional
(3D) data involving the peak number, sample name,
and  normalized  peak  area  were  processed  with  the
SIMCA  14.0  software  package  (Umetrics  AB,  Umea,
Sweden)  for  PCA  and  orthogonal  projections  to
latent  structures-discriminate  analysis  (OPLS-DA).
PCA indicated the distribution of  the origin data.  To
obtain  a  higher  level  of  group  separation  and  a
better understanding of the variables responsible for
classification,  supervised  OPLS-DA  was  applied.  To
refine  this  analysis,  the  first  principal  component  of
the  variable  importance  projection  (VIP)  was
obtained. The Student’s t-test was used for pairwise
comparison.  The  VIP  values  exceeding  1.0  with  a P-
value  lower  than  0.05  (P <  0.05)  in  the  Student’s t-
test  were  selected  to  correspond  to  potential
differential metabolites.
Metabolite  Identification,  Receiver  Operating
Characteristic  (ROC)  Curve,  And Pathway Analysis   
 The  selected  differential  metabolites  were  further
identified  by  searching  the  Kyoto  Encyclopedia  of
Genes and Genomes (KEGG),  the METLIN databases
for  first-order  MS,  and  a  self-built  database  for
second-order MS. The ROC curves were determined,
and the area under the ROC curve (AUC) was used to
detect the efficiency of this method in distinguishing
asthma  from  healthy  subjects  or  COPD  patients.
Finally,  each  potential  differential  metabolite  was
cross-listed  with  the  metabolic  pathways  in  the
KEGG database. The top altered metabolic pathways
were  then  identified  and  constructed  to  relevant
reference maps.

RESULTS

Subject Characteristics

The  patients  with  COPD  were  older  than  those
with asthma and healthy subjects. The ages between
asthma  and  healthy  controls  were  comparable.  The
sex  proportions  showed  no  statistical  difference

among  the  three  groups  (P =  0.224).  The  patients
with  COPD  included  2  current  smokers  (11.8%),  10
ex-smokers  (58.8%),  and  5  non-smokers  (29.4%).
Neither  patients  with  asthma  nor  healthy  subjects
were  smokers.  Similar  levels  of  blood  glucose,
triglyceride,  and  cholesterol  were  observed  among
the three groups.  The patients  with COPD exhibited
the  worst  spirometry  function  among  the  three
groups (Table 1).

Metabolomic  Profiling  Differences  between
Asthmatic Patients and Healthy Subjects

Data  In  Electrospray  Positive  Ion  Mode　 　 As
shown  in Figure  1A,  PCA  indicated  a  distinct
separation  between  the  asthma  and  healthy
subjects,  and  the  majority  of  the  samples  were
within  the  95% confidence  interval  (CI)  with  the
exception  of  those  corresponding  to  two  asthmatic
patients.  The  OPLS-DA  plot  further  showed  distinct
separation  between  the  asthmatic  and  healthy
subjects  (Figure  1B).  Similarly,  the  majority  of  the
samples  were  within  the  95% CI with  the  exception
of  one  asthmatic  sample.  The  R2Y  and  Q2Y  of  this
OPLS-DA model were 0.994 and 0.980, respectively.
Data  In  Electrospray  Negative  Ion  Mode　 　 As
shown  in Figure  2A,  PCA  also  demonstrated  a
distinct  separation  between  asthma  and  healthy
subjects,  and  the  majority  of  the  samples  were
within the 95% CI with the exception of one sample
corresponding to an asthmatic patient. The OPLS-DA
plot  indicated  the  distinct  separation  between  the
asthmatic  patients  and healthy  subjects  (Figure  2B).
Similarly,  the  majority  of  the  samples  were  within
the 95% CI, with the exception of two samples from
the asthmatic patients. The R2Y and Q2Y of this OPLS-
DA model were 0.991 and 0.921, respectively.
Identification Of Differential Levels Of Metabolites  
 Based  on  the  score,  the  VIP,  and P-value,  we
identified  5  different  metabolites  in  the  ESI+  mode
and  14  different  metabolites  in  the  ESI-  mode
(Table  2).  In  the  ESI+  mode,  the  levels  of
hypoxanthine,  p-chlorophenylalanine,  and  inosine
significantly  increased  in  the  asthmatic  patients,
whereas  the  levels  of  L-glutamine  and
glycerophosphocholine  significantly  decreased
compared  with  the  control  subjects.  In  the  ESI-
mode,  the  levels  of  hypoxanthine,  theophylline,
bilirubin, inosine, and palmitic acid were significantly
higher  in  the  asthmatic  patients  compared  with
those  in  COPD  subjects,  whereas  the  levels  of
succinate, xanthine, arachidonic acid, L-pyroglutamic
acid, indoxyl sulfate, L-valine, L-norleucine, L-leucine,
and  L-phenylalanine  were  significantly  lower  in  the
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asthmatic  patients  compared  with  control  subjects.
The  ROC  curve  was  used  to  evaluate  the  predictive
performance  of  the  aforementioned  differential
metabolites. Figure  3 shows  the  metabolites  with
AUC ≥ 0.8.

 Metabolomic  Profiling  Difference  between  the
Asthmatic and COPD Subjects

Data  in  Electrospray  Positive  Ion  Mode　 　 PCA

roughly  detected  a  differential  metabolic  profile
between asthma and COPD (Figure 4A). One sample
corresponding  to  an  asthmatic  patient  was  outside
the 95% CI. Based on the OPLS-DA, the score scatter
plot  indicated  a  clear  separation  between  the
asthmatic and COPD (Figure 4B) subjects, and all the
samples  were  within  the  95% CI.  The  R2Y  and  Q2Y
values in this OPLS-DA model were 0.879 and 0.252,
respectively.

Table 1. Demographic characteristics of the study subjects

Characteristics Asthma (n = 17) COPD (n = 17) Controls (n = 15)

Age (year) 53.7 ± 19.5 79.3 ± 8.8†‡
48.5 ± 12.9

Male/Female 6/11 11/6 8/7

Height (cm) 169.6 ± 6.7 173.7 ± 4.7 171.3 ± 3.9

Weight (kg) 67.6 ± 5.8 67.4 ± 5.2 66.5 ± 3.8

BMI (kg/m2) 23.5 ± 1.6 22.3 ± 1.2 22.7 ± 1.2
Smoking status

Current- 0 2 0

Ex- 0 10 0

Never- 17 5 15

Glucose (mmol/L) 4.9 ± 0.7 4.8 ± 0.8 4.6 ± 0.8

Triglyceride (mmol/L) 1.8 ± 0.3 1.8 ± 0.3 1.7 ± 0.3

Total cholesterol (mmol/L) 4.1 ± 0.8 4.0 ± 0.7 4.2 ± 0.9

High density lipoprotein (mmol/L) 1.5 ± 0.6 1.6 ± 0.5 1.6 ± 0.5

Low density lipoprotein (mmol/L) 2.4 ± 0.5 2.7 ± 0.9 2.8 ± 1.0

FEV1/FVC (%) 79.4 ± 4.2 61.3 ± 6.3†‡
86.0 ± 4.7

FEV1 %predicted 89.9 ± 4.0* 59.6 ± 6.8†‡
91.5 ± 4.4

　　Note. †COPD vs. Asthma, P < 0.001; ‡COPD vs. Controls, P < 0.001; *Asthma vs. Controls, P < 0.001.
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Table 2. Differentially expressed metabolites between asthmatic and healthy subjects

Metabolite name Score Median RT (s) Mean asthma Mean control VIP P-value Fold-changea

Positive ion mode (ESI+)

Hypoxanthine 0.888 127.044 762,120.978 107,680.398 1.292 1.828 × 10−6
7.078

P-chlorophenylalanine 0.946 299.633 103,213.840 69,289.675 1.082 3.215 × 10−5
1.490

L-Glutamine 0.951 386.792 14,215.705 52,805.785 1.329 2.179 × 10−6
0.269

Glycerophosphocholine 0.990 473.276 107,868.019 432,953.058 1.331 1.876 × 10−6
0.249

Inosine 0.997 172.638 402,568.442 21,353.459 1.262 3.141 × 10−6
18.853

Negative ion mode (ESI-)

Hypoxanthine 0.986 127.177 421,202.385 58,594.857 1.993 2.494 × 10−6
7.188

Succinate 0.986 467.769 24,293.468 30,744.437 1.155 9.328 × 10−3
0.790

Xanthine 0.997 170.712 69,038.696 145,934.844 1.988 6.556 × 10−6
0.473

Arachidonic Acid (peroxide
free) 0.950 46.921 550,848.247 1408,228.636 1.896 4.184 × 10−5

0.391

L-Pyroglutamic acid 0.998 267.481 419,335.669 722,668.930 1.609 2.727 × 10−4
0.580

Indoxyl sulfate 0.996 46.881 253,902.424 399,864.278 1.146 1.160 × 10−2
0.635

Theophylline 0.969 63.751 746,404.311 27,458.526 1.143 5.567 × 10−3
27.183

L-Valine 0.990 283.093 238,204.741 329,407.691 1.643 1.128 × 10−4
0.723

L-Norleucine 0.992 212.926 611,132.345 862,255.499 1.571 2.653 × 10−4
0.709

Bilirubin 0.997 54.940 16,581.417 9,240.124 1.050 3.550 × 10−2
1.795

L-Leucine 0.997 234.501 551,017.884 780,835.022 1.387 1.354 × 10−3
0.706

Inosine 0.998 171.190 841,330.913 31,156.248 1.799 3.193 × 10−5
27.004

Palmitic acid 0.999 161.731 116,896.629 79,641.247 1.329 3.144 × 10−3
1.468

L-Phenylalanine 0.919 197.371 527,761.313 683,438.123 1.589 4.118 × 10−4
0.772

　　Note. aFold-change:  Asthma versus  Control.  Abbreviations:  RT:  retention  time;  VIP:  variable  importance
for the projection.
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Figure 3. ROC curves of differential metabolites between asthmatic and control subjects with AUC ≥ 0.80.
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Figure 4. PCA  and  OPLS-DA  of  LC-MS  metabolite  profiles  between  the  asthmatic  and  COPD  subjects  in
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liquid chromatography-mass spectrometry; COPD: chronic obstructive pulmonary disease.  
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Data  in  Electrospray  Negative  Ion  Mode　　 The
trends  of  sample  distribution  also  differed  between
the asthmatic and COPD subjects in PCA (Figure 5A).
One  sample  that  corresponded  to  an  asthmatic
patient was outside the 95% CI. OPLS-DA indicated a
straightforward separation between the asthma and
COPD  patients,  and  one  asthmatic  sample  was
outside  the  95% CI (Figure  5B).  The  R2Y  and  Q2Y
values in this OPLS-DA model were 0.901 and 0.252,
respectively.
Identification of Metabolite Differential Levels　　
Based  on  the  score,  VIP,  and P-values,  we  detected
nine  different  metabolites  in  the  ESI+  mode  and
seven different metabolites in ESI- mode (Table 3). In
the  ESI+  mode,  the  levels  of  hypoxanthine,  L-
pipecolic  acid,  p-chlorophenylalanine,  and
acetylcarnitine  were  significantly  higher  in  the
asthmatic  patients,  whereas  the  levels  of  alpha-N-
phenylacetyl-L-glutamine,  1-methyladenosine,
glycochenodeoxycholate,  L-citrulline,  and  L-
glutamine  were  significantly  decreased  in  asthmatic
patients compared with those of the COPD patients.
In  the  ESI-  mode,  the  levels  of  linoleic  acid  and
hypoxanthine  were  significantly  higher  in  asthmatic
patients, whereas the levels of pseudouridine, alpha-
N-phenylacetyl-L-glutamine,  succinate,  L-citrulline,
and  glycochenodeoxycholate  were  significantly
decreased  in  asthmatic  patients  compared  with
those in the COPD patients. Figure 6 shows the ROC
curves  evaluating  the  predictive  performance  of
differential detection of metabolites with AUC ≥ 0.8.

Altered Metabolic Pathways Analysis

By  searching  the  KEGG  database,  the  key

differential  metabolites  between  the  asthma
patients  and  healthy  controls  were  identified  to  be
involved  in  the  following  pathways:  purine
metabolism,  caffeine  metabolism,  tricarboxylic  acid
(TCA)  cycle,  protein  digestion  and  absorption,  and
biosynthesis  of  amino  acids  (Figure  7).  The  key
differential  metabolites  between  asthma  and  COPD
were  identified  to  be  involved  in  the  pathways  for
purine metabolism and urea cycle (Figure 8).

DISCUSSION

Compared  with  other  ‘-omics’ strategies,
metabolomics  can  offer  a  number  of  advantages
because  of  its  close  biological  proximity  to  the
phenotype of life systems and the rapid observation
of  system  perturbations  in  the  metabolome[26].  A
range  of  analytical  platforms  has  been  utilized  in
metabolic  profiling  studies,  including
chromatography  coupled  with  MS  or  NMR
spectroscopy,  both of  which are widely  applied.  For
the  first  time,  the  present  study  demonstrated  that
the  serum  metabolic  profiling  of  asthmatic  patients
was distinct from that of COPD and healthy subjects
using  UPLC-MS-based  analysis.  Our  experimental
data  were  of  high  quality  and  stability  due  to  good
QC. The QC samples were densely distributed in the
PCA scatter 2D plots (refer to Supplementary Figures S1
and S2). Additionally, all the QC samples were within
±  2  standard  deviation  in  the  PCA  scatter  1D  plots
(refer  to Supplementary  Figures  S3 and S4 available
in www.besjournal.com).

Initially, the present study further reinforced our
previous  findings,  which  showed  that  serum
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metabolic  profiling  was  significantly  altered  in
patients with mild persistent asthma compared with
that of healthy subjects based on GC-MS methods[25].
In  addition,  several  metabolites  and  their  altered
trends  were  highly  similar  between  these  studies.
For  example,  we  observed  that  in  both  studies,  the
levels  of  inosine  increased,  whereas  those  of  L-
glutamine  and  arachidonic  acid  decreased  in
asthmatic  patients  compared  with  those  in  healthy
subjects.  These  studies  could  complement  each
other due to the presence of several high-molecular-

weight  metabolites  with  poor  thermal  stability  and
which could only be detected by LC-MS methods[26].
Notably,  both  R2Y  and  Q2Y  scores  in  the  OPLS-DA
model  exceeded  0.9,  despite  the  application  of  the
ESI  mode  (ESI+  or  ESI-),  suggesting  that  the  models
had  excellent  fitness  and  predictive  power  to
distinguish asthmatic patients from healthy subjects.

A  previous  study  conducted  by  Saude  et  al.
revealed  through  NMR  analysis  that  urine
metabolites were associated with airway dysfunction
in  an  ovalbumin-challenged  animal  model[19].  They

Table 3. Differential detection of metabolites between asthmatic and COPD subjects

Metabolite name Score Median RT (s) Mean asthma Mean COPD VIP P-value Fold-changea

Positive ion mode (ESI+)

Hypoxanthine 0.888 127.044 762,120.978 381,909.931 2.527 0.001259746 1.996
Alpha-N-Phenylacetyl-L-

glutamine 0.988 153.115 38,052.756 89,817.110 1.957 0.01036502 0.424

1-Methyladenosine 0.999 272.377 34,809.689 43,740.524 2.226 0.0038404 0.796

L-Pipecolic acid 0.963 236.526 232,104.868 123,058.269 1.738 0.01723709 1.886

P-chlorophenylalanine 0.946 299.633 103,213.840 88,268.687 1.065 0.02133749 1.169

Glycochenodeoxycholate 0.949 64.320 45,516.012 97,470.902 1.552 0.03594549 0.467

L-Citrulline 0.995 478.579 63,201.074 78,036.069 1.069 0.04906988 0.810

L-Glutamine 0.951 386.792 14,215.705 30,354.808 1.917 0.01095651 0.468

Acetylcarnitine 0.994 295.668 3,756,606.528 2,695,779.062 1.497 0.04943523 1.394

Negative ion mode (ESI-)

Pseudouridine 0.983 210.311 103,185.823 150,318.467 2.984 0.000021522 0.686

Linoleic acid 0.819 48.449 385,935.752 265,424.563 1.472 0.04613066 1.454
Alpha-N-Phenylacetyl-L-

glutamine 0.986 124.370 75,235.866 159,211.792 1.793 0.02703009 0.473

Hypoxanthine 0.986 127.177 421,202.385 228,230.660 2.046 0.00424504 1.846

Succinate 0.986 467.769 24,293.468 35,559.405 2.076 0.03407866 0.683

L-Citrulline 0.986 476.705 36,668.147 49,596.943 2.178 0.01640797 0.739

Glycochenodeoxycholate 1.000 63.258 111,864.373 232,527.155 1.661 0.04583166 0.481

　　Note. aFold-change: Asthma versus COPD. Abbreviations: RT: retention time; VIP: variable importance for
the projection.
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Figure 6. ROC curves of differential metabolites between asthmatic and COPD subjects with AUC ≥ 0.80.
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further  utilized  NMR  analysis  on  urine  samples  to
explore  the  differences  in  metabolite  profiling
among unstable asthmatic children, stable asthmatic
children,  and  healthy  subjects.  The  data  indicated
that  urine  metabolomic  analysis  could  aid  the
identification  of  stable  asthmatic  patients  from
healthy  subjects  and  of  stable  asthmatic  patients
from  unstable  asthmatic  patients,  achieving  a  good
diagnostic  accuracy  (>  90%)[20].  Subsequently,
Mattarucchi  et  al.  initially  applied  LC-MS analysis  to
urine  samples  in  asthmatic  children  and  healthy
subjects  and  demonstrated  that  metabolite  profiles
were  distinct  between  the  asthmatic  patients  and
control  subjects.  This  finding  was  unaffected  by
asthma  control  and/or  medication[15].  Using  a
combined  GC-  and  LC-MS  platform,  Ho  et  al.
revealed  that  metabolite  alterations  in
bronchoalveolar  lavage  fluid  of  ovalbumin-
challenged  mice  could  reverse  several  key
metabolite  changes  compared  with  the  levels  of
these  metabolites  in  control  animals  and  animals
treated  with  glucocorticoids[27].  In  addition,  several

experimental  and  human  studies  were  conducted
regarding  metabolomic  profiling  differentiation
between  asthmatic  patients  and  control  subjects
based  on  NMR  methods  and  on  different  biofluid
applications[22-24,28].  Collectively,  the  data
demonstrated  that  the  systemic  metabolic  state  in
asthma  was  considerably  different  from  that  in
healthy  subjects,  although  different  metabolites
were identified among these studies.

Furthermore,  our  data  indicated  that  serum
metabolic  profiling  was  different  between  mild
asthma  and  stable  COPD  subjects.  In  a  pilot  study,
metabolomic analysis of human urine samples based
on NMR spectroscopy highlighted that metabolomic
profiling  differences  could  be  noted  between
patients  with  asthma and  those  with  COPD prior  to
and  following  exacerbation.  In  addition,  their
predictive model could diagnose blinded asthma and
COPD  correctly  with  optimal  accuracy[24].  However,
the  data  regarding  the  application  of  metabolomic
analysis  on  the  differential  diagnosis  between
asthma and COPD are still limited. Asthma and COPD
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are  heterogeneous  diseases  with  distinct
phenotypes and in which metabolic states can differ
from  each  other  theoretically.  The  underlying
mechanisms  are  unclear,  and  further  studies  are
required to discover their precise function.

Notably,  in  our  study,  the  OPLS-DA  models  for
asthma  and  COPD  exhibited  no  desirable  predictive
power  compared  with  the  models  for  asthma  and
healthy  subjects.  This  finding  was  due  to  the  Q2Y
values  being  lower  than  0.5  (<  0.5)  despite  the
optimal fitness of the models (R2Y values were 0.879
for  ESI+  mode  and  0.901  for  ESI-  mode).  These
results may be ascribed to the following reasons:  1)
The asthmatic and COPD subjects lacked matching in
terms  of  age.  The  age  is  an  important  confounding
factor  for  metabolic  profiling  analysis.  2)  The
patients  with  COPD  were  often  current-  or  ex-
smokers,  and  tobacco  exposure  may  affect  their
metabolic profiles. 3) Relatively small sample sizes of
asthma  or  COPD  subject  were  used.  Therefore,  the
differential  detection  of  metabolites  in  the  present
study should be validated in a larger and prospective
cohort  study  to  assess  their  potential  to  distinguish
asthma from COPD.

Interesting,  the  levels  of  hypoxanthine  were
evidently  higher  in  asthmatic  patients  compared
with  those  in  healthy  or  COPD  subjects.
Hypoxanthine  is  a  key  metabolite  in  purine
metabolism,  and  our  study  reported  for  the  first
time  that  the  serum  levels  of  hypoxanthine  were
significantly  higher  in  asthmatic  compared  with
healthy and/or COPD subjects. In addition, inosine is
involved  in  purine  metabolism,  and  its  levels  were
significantly  elevated  in  asthmatic  patients
compared with those in healthy subjects. Inosine can
inhibit airway inflammation by reducing the number
of  macrophages,  lymphocytes,  and  eosinophils,  and
cytokines  interleukin-4  and  -5  in  the  airway[29].  The
increased  inosine  level  may  be  associated  with  the
increased  activity  of  adenosine  deaminase  (ADA),
which converts adenosine to inosine. The increase in
ADA  activity  can  protect  the  body  from  the
inflammation  responses  of  bronchial  asthma  in
animal models[30]. We speculated that the increase in
inosine is likely to be a protective response to airway
inflammation  in  asthma.  Purine  metabolism  is  also
proven  to  be  associated  with  the  pathogenesis  of
asthma in recent studies. Uric acid levels increased in
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bronchoalveolar  lavage  fluid  and  pulmonary  tissue
homogenates in asthmatic patients and in asthmatic
mouse  models[31].  Serum  uric  acid  levels  increased
proportionally  with  the  severity  of  asthma
exacerbation  and  were  inversely  associated  with
lung  function[32].  Uric  acid  could  be  produced  by
human  airway  epithelial  cells,  and  the  level  of
extracellular  uric  acid  in  culture  was  elevated  by
allergen  stimulation[33].  An  epidemiological  study
reported that the elevated serum uric acid level is a
predictor  for  the  development  of  airflow
limitation[34].  However,  another  study  showed  that
plasma  uric  acid  levels  decreased  in  ovalbumin-
challenged  asthmatic  mouse  models[35].  Although
previous  studies  have  shown  inconsistencies,  uric
acid  should  be  considered  a  useful  biomarker  for
asthma.  Uric  acid  is  the  final  product  of  purine
metabolism  and  is  produced  from  xanthine  and
hypoxanthine  by  the  enzyme  xanthine  oxidase.
Therefore,  the  increasing  levels  of  serum
hypoxanthine  in  asthmatic  patients  in  the  present
study  suggests  that  xanthine  oxidase  may  be
inhibited, or hypoxanthine accumulates in the purine
metabolic pathway in asthma, although no alteration
of  uric  acid  levels  was  detected  in  our  study.
According to our  data,  significantly  increased serum
hypoxanthine  levels  in  asthma  may  aid  the
differential  diagnosis  of  asthmatic  patients
compared  with  healthy  individuals  and  COPD.
Hypoxanthine  can  be  a  potential  diagnostic
biomarker  for  asthma.  However,  our  study  was  a
pilot  research,  and  targeted  metabolomic  analysis
should  be  conducted  to  further  validate  the  role  of
hypoxanthine and purine metabolism in asthma.

In  addition  to  purine  metabolism,  other
metabolic pathways were identified to be involved in
asthma.  Metabolic  alteration  in  TCA cycle  had been
identified  and  discussed  in  our  previous  work[25].
Changes  in  amino  acid  metabolism  could  be
observed  in  our  study.  The  potential  functions  of
these  differential  metabolites  (i.e.,  L-valine,  L-
leucine,  and  L-phenylalanine)  in  asthma  were
unclear.  In  a  recent  metabolomics  study,  the  urine
levels  of  3,4-dihydroxy-L-phenylalanine  increased
significantly  in  corticosteroid-nonrespondent
children  who  had  severe  asthma  compared  with
corticosteroid-respondent  children[36].  This  finding
was inconsistent  to  a  certain  extent  with  our  study.
In  our  research,  the  asthmatic  subjects  presented
lower  serum  levels  of  L-phenylalanine  than  the
healthy controls. However, the asthmatic subjects in
our  study  comprised  adults  with  mild  asthma.  The
role  of  amino  acid  metabolism  pathway  in

development of asthma needs to be further studied
in the future.

Compared  with  COPD  subjects,  in  addition  to
purine  metabolism,  the  pathways  of  urea  cycle  and
arginine  metabolism  in  asthmatic  subjects  differed.
In  bronchial  epithelial  cells,  L-arginine  is  the
substrate of  nitric  oxide synthase and the upstream
metabolite  of  nitric  oxide[37].  The  reduced
bioavailability  of  L-arginine  can  limit  the  production
of  nitric  oxide,  and  its  bronchodilator  effect  will  be
impaired[38].  L-Citrulline  can  be  metabolized  to  L-
arginine  by  the  enzyme  argininosuccinate[39].  In  our
study,  the  serum  levels  of  L-citrulline  in  asthmatic
subjects  were  lower  than  that  in  COPD  subjects,
indicating  that  the  bioactivity  of  argininosuccinate
may differ  between asthma and COPD,  although no
alteration in the levels of L-arginine was detected in
our  study.  Another  study  showed  that  the  whole-
body  citrulline  rate  of  appearance  was  higher  in
stable  COPD  patients  than  in  healthy  controls,  and
the  authors  speculated  that  this  phenomenon  is
likely  a  reflection  of  higher  glutamine  delivery  and
turnover  because  glutamine  is  the  upstream
metabolite  of  arginine[40].  This  finding  can  partly
support our results because serum L-glutamine level
was  also  elevated  in  COPD  subjects,  in  addition  to
elevated  serum  L-citrulline  levels,  compared  with
asthmatic  subjects.  The  metabolomic  profile
difference between asthma and COPD had also been
identified  in  a  recent  study.  COPD  patients  showed
increased  ethanol  and  methanol  levels  in  their
exhaled  breath  condensate  and  significantly  lower
levels  of  formate  and  acetone/acetoin  compared
with asthmatic patients[41]. These findings reinforced
the  evidence  indicating  that  airway  inflammation  is
distinct between asthma and COPD.

The  present  study  includes  the  following
limitations: 1) Our results cannot be extrapolated to
all  the asthmatic patients and COPD subjects,  as we
only  recruited  individuals  with  mild  persistent
asthma  and  stable  COPD.  On  the  other  hand,  the
association  between  metabolomic  profiles  and
clinical  phenotypes  were  excluded  in  the  present
study. This hypothesis can be tested in a study with a
larger  sample  size.  2)  The  OPLS-DA  models  for
asthma  and  COPD  lacked  a  good  predictive  power,
which  has  been  mentioned  previously.  This  finding
may  be  due  to  the  mismatched  age  and  tobacco
exposure between asthma and COPD subjects, which
was  the  major  limitation  in  our  study.  However,  in
clinical  practice,  individuals  with  COPD  frequently
include  smokers  and  aged  and  exhibit  lower
incidence  of  allergic  reactions  compared  with  those
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of  subjects  with  asthma[1,6].  Tobacco  exposure  was
difficult  to  match  between  asthma  and  COPD
patients.  The  diagnosis  of  COPD  cannot  be
completely  excluded  in  heavy  smokers  even  when
they  exhibit  typical  asthma-like  symptoms  with
variable airflow limitation. By contrast, a non-smoker
with fixed airflow limitation should not be diagnosed
as COPD indiscreetly.

Our  LC-MS  analysis  demonstrated  that
individuals  with  asthma  have  a  unique  serum
metabolome, which can be used to distinguish them
from  patients  with  COPD  and  healthy  subjects.
Purine  metabolism  alteration  may  be  distinct  and
involved  in  the  pathogenesis  of  asthma,  as
hypoxanthine serum levels are markedly elevated in
asthmatic individuals.
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Supplementary Table S1. Gradient elution program used in Ultra Performance Liquid Chromatography method

Time (min) Flow rate (uL/min) Mobile phase A (%) Mobile phase B (%)

  0.00 300 15 85

  1.00 300 15 85

12.00 300 35 65

12.10 300 60 40

15.00 300 60 40

15.10 300 15 85

20.00 300 15 85

　　Mobile phase A: water containing 25 mM ammonium acetate and 25 mM ammonium hydroxide; Mobile
phase B: acetonitrile
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