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Abstract

Objective    This study aimed to develop an artificial neural network (ANN) model combined with dietary
retinol  intake  from different  sources  to  predict  the  risk  of  non-alcoholic  fatty  liver  disease  (NAFLD)  in
American adults.

Methods    Data  from  the  2007  to  2014  National  Health  and  Nutrition  Examination  Survey  (NHANES)
2007–2014 were analyzed. Eligible subjects (n = 6,613) were randomly divided into a training set (n1 =
4,609) and a validation set (n2 = 2,004) at a ratio of 7:3. The training set was used to identify predictors
of NAFLD risk using logistic regression analysis. An ANN was established to predict the NAFLD risk using a
training  set.  Receiver  operating  characteristic  (ROC)  curve  analysis  was  performed  to  evaluate  the
accuracy of the model using the training and validation sets.

Results    Our study found that the odds ratios (ORs) and 95% confidence intervals (CIs) of NAFLD for the
highest  quartile  of  plant-derived  dietary  retinol  intake  (i.e.,  provitamin  A  carotenoids,  such  as β-
carotene) (OR = 0.75, 95% CI: 0.57 to 0.99) were inversely associated with NAFLD risk, compared to the
lowest  quartile  of  intake,  after  adjusting  for  potential  confounders.  The  areas  under  the  ROC  curves
were 0.874 and 0.883 for the training and validation sets, respectively. NAFLD occurs when its incidence
probability is greater than 0.388.

Conclusion    The  ANN model  combined  with  plant-derived  dietary  retinol  intake  showed a  significant
effect  on  NAFLD.  This  could  be  applied  to  predict  NAFLD  risk  in  the  American  adult  population  when
government departments formulate future health plans.

Key words: NAFLD; Plant-derived dietary retinol intake; ANN; Prediction model; NHANES

Biomed Environ Sci, 2023; 36(12): 1123-1135 doi: 10.3967/bes2023.120 ISSN: 0895-3988

www.besjournal.com (full text) CN: 11-2816/Q Copyright ©2023 by China CDC
  

*This study was funded by the National Natural Science Foundation of China [Project Approval No. 71804101].
#Correspondence  should  be  addressed  to YANG  Wen  Qin,  E-mail: yangwenqin8@126.com; LU  Jiao,  E-mail:

lujiao801@163.com
Biographical  note  of  the  first  author: LIU  Can,  male,  born  in  1988,  Doctoral  Degree,  majoring  in  nutritional

epidemiology

Biomed Environ Sci, 2023; 36(12): 1123-1135 1123

https://doi.org/10.3967/bes2023.120
mailto:yangwenqin8@126.com
mailto:lujiao801@163.com


INTRODUCTION

N on-alcoholic fatty liver disease (NAFLD) is
a  clinicopathological  syndrome
characterized  by  lipid  accumulation  in

the  liver  without  excessive  alcohol  intake  or  other
liver  diseases[1].  It  encompasses  a  spectrum  of  liver
damage,  ranging  from  simple  liver  steatosis  to
nonalcoholic  steatohepatitis  (NASH),  liver  fibrosis,
cirrhosis,  and  hepatocellular  carcinoma  (HCC)[2-5],
which  increases  the  risk  of  hypertension,  diabetes,
obesity,  and  cardiovascular  disease[6-8].  In  recent
years,  the  prevalence  of  NAFLD  has  increased
rapidly,  ranging  from  10% to  35% worldwide[9],  and
approximately  30% of  American  adults  have
NAFLD[10].  To  our  knowledge,  no  pharmacological
treatment  has  been  approved  for  NAFLD[11].  Dietary
modifications and antioxidants are recommended to
prevent NAFLD progression of NAFLD[12].

Several  modifiable  lifestyle  and  dietary  factors
are  associated  with  chronic  diseases.  Previous
studies demonstrated that high intake of vegetables,
fruits,  and  whole  grains,  as  a  dietary  pattern  was
associated  with  reduced  risk  of  hypertension,
hyperuricemia,  type  2  diabetes,  and  cardiovascular
disease[13-17].  In  addition,  several  studies  have
reported  that  the  consumption  of  fried  foods,
refined  grains,  processed  meat,  and  fructose-rich
foods  increases  the  risk  of  NAFLD[18-20],  whereas  the
consumption  of  whole  grains,  legumes,  probiotic
dairy  products,  vegetables,  and  fruits  reduces  the
risk of NAFLD[20-23].

Vitamin  A  is  a  common  dietary  antioxidant[24]

that  has  both antioxidant  and antifibrotic  effects[25].
The two major forms of dietary vitamin A are animal-
derived  dietary  retinol  (i.e.,  preformed  vitamin  A,
such as  retinol  and retinyl  esters)  and plant-derived
dietary  retinol  (i.e.,  provitamin  A  carotenoids,  such
as carotene). Animal products containing preformed
vitamin  A  provide  approximately  70% of  daily
vitamin  A  intake.  Provitamin  A  carotenoids  that  are
mainly found in fruits and vegetables provide ≤ 30%
of  daily  vitamin  A  intake[26],  which  can  be  cleaved
and metabolized into retinol after absorption by the
intestinal  cells[27].  The  basic  mechanisms  underlying
preformed  vitamin  A  and  carotenoid  absorption
were first investigated 40 years ago using everted rat
intestinal sacs[28-30]. The data obtained indicated that
preformed  vitamin  A  absorption  occurred via (a)
carrier-dependent  proteins,  whereas  carotenoids
were  absorbed via a  passive  diffusion  process[27].
Additionally,  hepatocytes  actively  metabolize
preformed  vitamin  A,  which  alter  glucose  and  lipid

metabolism.  Carotenoids  possess  antioxidant
properties  and  can  scavenge  free  radical  species  in
the  liver,  thereby  ameliorating  hepatic
dysfunction[31].  Therefore,  it  is  important  to  study
the effects of dietary retinol in patients with NAFLD.
However,  in  studies  exploring  the  potential
relationship  between  dietary  retinol  and  NAFLD,
discrepancies in ethnic background, dietary patterns,
and  study  design  led  to  inconsistent  results.  An
Iranian  study  indicated  that  higher  retinol  intake  is
associated  with  a  reduced  risk  of  NAFLD[9].  Another
cross-sectional study of 80 participants showed that
patients with NAFLD had a higher intake of vitamin A
than  healthy  controls[32].  However,  these  studies
have  reported  inconsistent  outcomes.  Previous
studies  have  mainly  focused  on  the  relationship
between  total  dietary  retinol  intake  and  the  risk  of
NAFLD[9,33,34] and  have  less  statistical  power  in  the
evaluation  of  nonlinear  and  complex  relationships.
Moreover, these studies did not adjust for potential
confounders  such  as  sex,  age,  and body  mass  index
(BMI)[32,35].  Therefore,  the  establishment  of  a  model
that  incorporates  dietary  retinol  intake  from
different  sources  to  predict  the  risk  of  NAFLD  is
warranted.

As  a  novel  data-mining  analysis  approach,
artificial  neural  networks  (ANNs)  play  an  important
role in analyzing large and complex datasets related
to  health  promotion,  disease  management,  and
chronic  disease  prediction[36-38].  In  previous  studies,
ANN  has  been  used  to  automatically  predict  the
exacerbation  of  chronic  obstructive  pulmonary
disorder[39],  heart  disease,  and  hyperuricemia[40,41],
and  diagnose  diabetes via small  mobile  devices[42].
However,  no  study  has  investigated  the  ability  of
ANN  combined  with  dietary  retinol  intake  from
different  sources  to  predict  the  risk  of  NAFLD.
Therefore,  this  cross-sectional  study  aimed  to
illustrate  the  potential  usefulness  of  artificial
intelligence,  particularly  ANN,  in  predicting  the  risk
of  NAFLD  after  incorporating  dietary  retinol  intake
from different sources. This model can be used as an
initial  screening  tool  to  assess  the  correlation
between  dietary  retinol  intake  from  different
sources  and  the  risk  of  NAFLD,  contributing  to  the
management of NAFLD in American adults. 

MATERIALS AND METHODS
 

Subjects and Data Collection

The  National  Health  and  Nutrition  Examination
Survey  (NHANES)  was  conducted  by  the  National
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Center for Health Statistics (NCHS) of the Centers for
Disease  Control  and  Prevention  (CDC)  in  the  US[43].
The  survey  was  a  continuous  program  in  2-year
cycles  starting  from  1999[44].  The  NHANES  includes
demographic,  socioeconomic,  dietary,  and  health-
related  questions.  The  examination  component
consisted  of  medical,  dental,  and  physiological
measurements, as well as laboratory tests conducted
by  highly  trained  medical  personnel,  which  were
collected  from  a  complex  multistage  stratified
sample  representative  of  the  non-institutionalized
civilian  US  population[45].  The  study  plan  was
approved  by  the  Research  Ethics  Review  Board  of
the  National  Center  for  Health  Statistics  and  all
participants provided written informed consent.

This  study  analyzed  continuous  National  Health
and  NHANES  data  from  2007  to  2014.  The  NHANES
datasets  included 40,617 participants  (20,180 males
and  20,437  females)  and  23,482  subjects  aged  20

years  or  older  were  included.  Participants  with
missing  information  on  the  United  States  fatty  liver
index  (USFLI)  were  excluded  (n =  13,728).
Furthermore, 200 individuals with hepatitis B surface
antigens  and  hepatitis  C  virus  antibodies  were
excluded.  Subsequently,  participants  whose  alcohol
consumption  was ≥ 10  g/day  in  women  and ≥ 20
g/day  in  men  (n =  1,535)  were  excluded.  Finally,
6,613  participants  (3,067  males  and  3,546  females)
were  included  in  our  analyses  after  excluding  those
who  were  pregnant  (n =  94),  lacked  reliable  or
complete  dietary  recall  (n =  1,224),  had  missing
weight  data  (n =  8),  and  whose  average  energy
intake  was  higher  than  the  mean  +  3  standard
deviations  (SDs)  or  less  than the  mean – 3  SDs  (n =
80) (Figure 1). 

NAFLD Definition and Measurement

According  to  a  previous  study[46],  NAFLD  was
 

Par�cipants of NHANES
2007 to 2008 (n = 10,149)
2009 to 2010 (n = 10,537)
2011 to 2012 (n = 9,756)
2013 to 2014 (n = 10,175)
N = 40,617

17,135 par�cipants who were younger than 20 years
old were excluded

13,728 par�cipants with missing USFLI data were excluded

200 par�cipants who had hepa��s B surface an�gen and
hepa��s C virus an�body were excluded

1,535 par�cipants whose alcohol consump�on was ≥ 10 g/day
in women and ≥ 20 g/day in men were excluded

94 par�cipants who were pregnant were excluded

1,224 par�cipants lacked reliable or complete dietary recall
were excluded

8 par�cipants with missing weight data were excluded

80 par�cipants with extreme total energy intake
were excluded

6,613 par�cipants were included in the study

Figure 1. Flow chart showing the eligible participants selection of the study. NHANES: National Health and
Nutrition Examination Survey.

Artificial neural network predict nonalcoholic fatty liver disease 1125



defined  based  on  the  USFLI,  which  was  previously
validated. Patients with other causes of chronic liver
disease  and  exposure  to  steatogenic  medication
were  excluded.  The  USFLI  was  calculated  based  on
age,  race,  waist  circumference,  fasting  glucose,
gamma  glutamyl  transferase,  and  fasting  insulin
level[47].  A  USFLI  cutoff  value  of ≥ 30  was  used  to
define  the  presence  of  NAFLD[47].  As  reported  in
previous  studies,  USFLI  is  a  credible  noninvasive
measure of NAFLD and an independent predictor of
liver-related  and  overall  mortality[48-50].  The  USFLI  is
calculated  as  follows:  USFLI  =  [e^  (−0.8073  ×  non –
Hispanic  Black  +  0.3485  ×  Mexican  American  +
0.0093  ×  Age  +  0.6151  ×  ln  (GGT)  +  0.0249  ×  Waist
Circumference  +  1.1792  ×  ln  (Insulin)  +  0.8242  ×  ln
(Glucose) – 14.7812)  /  {(1  +  [e^  (-0.8073  ×  non –
Hispanic  Black  +  0.3485  ×  Mexican  American  +
0.0093  ×  Age  +  0.6151  ×  ln  (GGT)  +  0.0249  ×  Waist
Circumference  +1.1792  ×  ln  (Insulin)  +  0.8242  ×  ln
(Glucose) – 14.7812)]} × 100.

The value for “non-Hispanic Black” and “Mexican
American” is 1 if the person is of that ethnicity, and 0
if the person is not. 

Dietary Retinol Intake

Dietary  retinol  intake  was  calculated  using  two
24-h  dietary  recall  interviews  in  retinol  activity
equivalents  (mcg)[51].  The  first  dietary  recall
interview  was  conducted  in  person  at  the  mobile
examination  center,  and  the  second  interview  was
conducted  by  telephone  3–10  days  later.  Nutrient
intake  was  calculated  using  the  US  Department  of
Agriculture  Dietary  Research  Food  and  Nutrition
Database for Dietary Studies[16].  Different sources of
dietary retinol, such as the sources of animal-derived
dietary retinol intake (milk and milk products; meat,
poultry,  fish  and  mixtures;  eggs)  and  plant-derived
dietary retinol intake (legumes, nuts and seeds; grain
products;  fruits;  vegetables)  were  identified  using
the  food  codes.  The  detailed  operating  procedures
are  available  at  https://search.  USA.  gov/searches.
Affiliate  =  agricultural  research  service  earners  and
query  =  FNDDS  +  2012.  Dietary  retinol  intake  from
the two 24-h  recalls  was  averaged and adjusted  for
energy  intake  for  subsequent  analyses.  The  dietary
retinol  intake  (μg/1,000  kcal  per  day)  was  divided
into quartiles. It should be noted that dietary retinol
intake  from  supplements  was  not  included  in  total
dietary  retinol  intake.  For  animal-derived  dietary
retinol intake, 1 μg retinol activity equivalents (RAEs)
was  equal  to  1  μg  of  all-trans  retinol  from  animal
foods.  Plant-derived  dietary  retinol  intake  was
estimated using the following Formula: 1 RAEs (μg) =

1/12  beta-carotene  (μg)  +  1/24  other  provitamin  A
(μg)[51]. 

Covariates

Potential  confounding  factors  were  adjusted  in
multivariate  models,  including  sex  (male  and
female), age (20–44 years, 45–59 years, 60–74 years
and ≥ 75  years),  race  (Mexican-Americans,  other
Hispanics,  non-Hispanic  Whites,  non-Hispanic  Blacks
and  other  races),  BMI  (normal:  < 25  kg/m2;
overweight:  25  to  < 30  kg/m2;  obese: ≥ 30  kg/m2),
education level (under high school, high school, and
above  high  school),  annual  household  income
(< $20,000, $20,000–$44,999, $45,000–$74,999, and
≥ $75,000),  smoking  status  (smoking  at  least  100
cigarettes  in  life  or  not),  vigorous  recreational
activity  (yes  or  no),  diabetes  (yes  or  no),
hypertension  (yes  or  no),  total  cholesterol  (TC)  and
uric  acid  (UA).  Diabetes  was  defined  based  on  the
following  conditions:  1)  fasting  blood  glucose  level
≥ 7.0  mmol/L,  2)  2-h  plasma  glucose  level ≥ 11.1
mmol/L,  3)  use  of  antidiabetic  pills  or  insulin,  or  4)
self-reported  diabetes  diagnosed  by  a  physician[52].
Hypertension  was  defined  as  mean  systolic  blood
pressure ≥ 130  mmHg  and/or  mean  diastolic  blood
pressure ≥ 80 mmHg, or the use of antihypertensive
agents and self-reported physician diagnosis[53]. 

Statistical Analysis

All  eligible  subjects  (n =  6,613)  were  randomly
divided  into  a  training  set  (n1 =  4,609)  and  a
validation set (n2 = 2,004) at a ratio of approximately
7:3,  based  on  the  deep  learning  of  the  ANN  for
proportional  division[54,55].  The  chi-square  test  was
used  for  categorical  variables  (Student’s t-test  for
continuous  variables)  to  compare  differences
between groups. The training set was used to select
variables  and  establish  a  predictive  ANN  model.
Subsequently,  a  validation  set  is  used  to  test  and
evaluate  the  ANN  models.  All  variable  values  were
normalized on a scale of 0 to 1. The binary variables
used  were  0  and  1  to  indicate ‘No’ and ‘Yes,’
respectively.  Non-binary  variables  were  normalized
as X’m  =  (Xm – Xmin)/  (Xmax – Xmin). Continuous
variables  were  expressed  as  mean  values  [standard
deviation  (SD)],  and  categorical  variables  were
reported as percentages of frequency.

The  model  analysis  comprised  three  stages.  In
the  first  stage,  the  training  set  was  used  to  identify
predictors  of  NAFLD  risk  using  logistic  regression
analysis.  Univariate  logistic  regression  was  used  to
explore  predictors  of  NAFLD  risk.  Dietary  retinol
levels  were  divided  into  quartiles  with  the  first
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quartile  (Q1)  set  as  the  reference  category.  Two
models were created: Model 1 included sex and age;
in Model 2, we further adjusted for race, educational
level,  smoking  status,  recreational  activities,  annual
household  income,  hypertension,  diabetes,  BMI,
low-density  lipoprotein  (LDL),  UA,  and  TC  levels.
Odds ratios (ORs) and 95% confidence intervals (CIs)
were  used  to  quantify  correlations.  In  the  second
stage,  a  neural  network  model  was  established  to
predict  the  NAFLD  risk  by  incorporating  the
significant predictors identified in the first stage. The
ANN  model  was  performed  after  selecting  all
potentially  important  risk  predictors  (P < 0.05)  from
the univariate logistic  models in our study.  A neural
network is generally composed of input, hidden, and
output  layers,  which  function  by  receiving
information, processing information, and calculating
responses,  respectively.  As  a  mathematical  or
computational  model,  ANN attempt  to  simulate  the
structure  or  function  of  biological  neural
networks[56].  In  addition,  as  a  nonlinear  statistical
data  modeling  tool,  it  can  model  the  complex
association  between  the  input  and  output.  To  our
knowledge, different types of neural networks, such
as  feed-forward  neural  networks,  radial  basis
function  (RBF)  networks,  and  Kohonen  self-
organizing networks,  have been used to predict  risk
predictors  related  to  chronic  diseases[57,58].  Previous
studies  demonstrated  that  the  back-propagation
(BP)  delta  regular  network  is  a  feed-forward  neural
network, which is the most popular choice owing to
its  relative  simplicity  and  stability[41].  Thus,  the  BP
network was used for analysis in our study.

In  the  third  stage,  the  performance  of  the  risk
assessment model (using the training and validation
sets)  was  evaluated  using  accuracy,  sensitivity  (Se),
specificity  (Sp),  Youden  index,  and  Receiver
operating  characteristic  (ROC)  curve  analysis  to
assess the discriminability of the model. An accuracy
index  was  used  to  measure  the  percentage  of
correctly  diagnosed  participants.  Sensitivity  was  the
proportion  of  participants  who  met  the  target
condition and yielded positive test results. Specificity
was  defined  as  the  proportion  of  participants  who
did not have any target conditions and gave negative
test  results.  The  ROC  curves  graphically  show  true
positives versus false positives at a range of cutoffs,
and the selection of the optimal cutoff for the clinical
support used. The Youden index is the sum of Se and
Sp minus one (Se + Sp - 1)[59].  All  statistical  analyses
were performed using SPSS Modeler  18.3  and Stata
15.0.  Appropriate  sample  weights  and  units  were
used  as  nationally  representative  estimates  in  the

analyses.  A  two-tailed P < 0.05  was  considered  as
statistically significant for all analyses. 

RESULTS
 

Participant Characteristics

Supplementary  Table  S1 (available  in
www.besjournal.com)  summarizes  the  patient
characteristics  in  the  training  and  validation  sets.
There were 2,124 males and 2,485 females (53.92%)
in the training set, and 943 males and 1,061 females
(52.94%)  in  the  validation  set.  In  our  study,  the
differences between the training and validation sets
were  not  statistically  significant,  except  for  race,
which  suggests  that  the  subjects  in  these  two
datasets had similar characteristics (P > 0.05).

The  individuals  with  NAFLD  in  the  training  set
included  901  males  (52.88%)  and  803  females
(47.12%)  (Table  1).  We  found  that  risk  predictors
such  as  sex,  age,  race,  BMI,  education  level,  annual
household  income,  smoking  status,  vigorous
recreational  activity,  hypertension,  diabetes,  uric
acid  (UA),  high-density  lipoprotein  (HDL),  animal-
derived  dietary  retinol  intake,  and  plant-derived
dietary  retinol  intake  showed statistically  significant
differences  between  participants  with  NAFLD  and
healthy  controls  in  the  training  set  (P <  0.05).
Participants  with  NAFLD  tended  to  be  older,  were
more likely to be Mexican Americans, and had lower
educational  levels,  annual  household  incomes,
vigorous  recreational  activity  levels,  and  HDL  and
plant-derived dietary retinol  intake than the control
group.  In  addition,  participants  with  NAFLD  were
more likely to be obese, smokers, have hypertension
and  diabetes,  and  have  higher  levels  of  serum  UA
and animal-derived dietary retinol intake than those
without NAFLD (P < 0.01). 

Predictors of NAFLD Risk

The  predictors  of  NAFLD  risk  identified  in  the
logistic  regression  analysis  of  the  training  set  are
shown  in Table  2.  In  univariate  logistic  regression
models,  race  (OR =  0.634,  95% CI:  0.588–0.684),
vigorous  recreational  activity  (OR =  0.679,  95% CI:
0.540–0.853)  and  HDL  (OR =  0.955,  95% CI:
0.948–0.961)  were  inversely  associated  with  NAFLD
risk.  Moreover,  there  were  significant  positive
correlations  between  NAFLD  risk  and  the  following
predictors:  age  (OR =  1.251,  95% CI:  1.139–1.374),
BMI (OR = 4.386, 95% CI: 3.870–4.971), smoking (OR
=  1.353,  95% CI:  1.149–1.594),  hypertension  (OR =
1.546,  95% CI:  1.289–1.855),  diabetes  (OR =  2.423,
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Table 1. Participant characteristics in training data set by NAFLD status

Characteristics
NAFLD

P-value
No (n = 2,905) Yes (n = 1,704)

Sex, n (%) < 0.001
Males 1,223 (42.10) 901 (52.88)
Females 1,682 (57.90) 803 (47.12)

Age (years), n (%) < 0.001
20– 1,317 (45.34) 492 (28.87)
45– 681 (23.44) 468 (27.46)
60– 606 (20.86) 528 (30.99)
≥ 75 301 (10.36) 216 (12.68)

Race/ethnicity, n (%) < 0.001
Mexican American 344 (11.84) 407 (23.88)
Other hispanic 328 (11.29) 207 (12.15)
Non-hispanic white 1,271 (43.76) 798 (46.84)
Non-hispanic black 636 (21.89) 181 (10.62)
Other/multiracial 326 (11.22) 111 (6.51)

BMI (kg/m2), n (%) < 0.001
< 25 1,172 (40.41) 79 (4.64)
25–30 1,087 (37.48) 444 (26.09)
≥ 30 641 (22.11) 1,179 (69.27)

Educational level, n (%) < 0.001
< High school 624 (21.51) 579 (34.06)
High school 665 (22.92) 391 (23.00)
> High school 1,612 (55.57) 730 (42.94)

Annual household income (CNY), n (%) < 0.001
< 20,000 539 (19.40) 394 (24.16)
20,000– 951 (34.22) 663 (40.65)
45,000– 558 (20.08) 292 (17.90)
≥ 75,000 731 (26.30) 282 (17.29)

Smoking status, n (%) < 0.001
Yes 1,088 (37.48) 818 (48.00)
No 1,815 (62.52) 886 (52.00)

Vigorous recreational activity, n (%) < 0.001
Yes 709 (24.41) 186 (10.92)
No 2,196 (75.59) 1,518 (89.08)

Hypertension, n (%) < 0.001
Yes 1,133 (39.00) 1,065 (62.50)
No 1,772 (61.00) 639 (37.50)

Diabetes, n (%) < 0.001
Yes 343 (11.81) 638 (37.44)
No 2,562 (88.19) 1,066 (62.56)

Cholesterol, mg/dL 191.81 ± 41.45 194.03 ± 41.86 0.080
Uric Acid, mg/dL 5.13 ± 1.29 5.99 ± 1.42 < 0.001
High-density lipoprotein, mg/dL 56.00 ± 14.51 45.87 ± 11.91 < 0.001
Low-density lipoprotein, mg/dL 114.76 ± 35.28 115.08 ± 36.17 0.766
Average energy intake, kcal per day 1,892.93 ± 696.32 1,907.61 ± 716.59 0.494
Total dietary retinol intake, RAEs, μg/1,000 kcal per day 339.77 ± 292.55 327.69 ± 280.49 0.170
Animal-derived dietary retinol intake, RAEs, μg/1,000 kcal per day 122.52 ± 144.50 135.60 ± 201.85 0.011
Plant-derived dietary retinol intake, RAEs, μg/1,000 kcal per day 200.37 ± 253.68 171.29 ± 185.98 < 0.001

　　Note. Continuous variables are represented by mean ± standard deviation (SD). NAFLD: non-alcoholic fatty
liver disease, BMI: Body Mass Index, RAEs: retinol activity equivalents.
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95% CI:  1.985–2.957)  and  UA  (OR =  1.291,  95% CI:
1.212–1.375).

The  weighted ORs (95% CIs)  for  NAFLD  as  a
dichotomous  outcome  based  on  the  quartiles  of
total  dietary  retinol  intake,  animal-,  and  plant-

derived  dietary  retinol  intake  are  shown  in Table  3.
In  the  table,  outcomes  are  given  as  classified
variables  (quartiles)  for  total  dietary  retinol  intake,
animal-derived  dietary  retinol  intake,  and  plant-
derived  dietary  retinol  intake  due  to  evidence  of

 

Table 2. Analysis of risk factors for NAFLD using univariate logistic regression model

Variables B SE Wald χ2 P OR (95% CI)

Age 0.224 0.048 22.004 < 0.001 1.251 (1.139–1.374)

BMI 1.478 0.064 535.961 < 0.001 4.386 (3.870–4.971)

Race/ethnicity −0.455 0.038 140.054 < 0.001 0.634 (0.588–0.684)

Smoking 0.302 0.084 13.085 < 0.001 1.353 (1.149–1.594)

Vigorous recreational activity −0.387 0.117 11.018 0.001 0.679 (0.540–0.853)

Hypertension 0.436 0.093 21.982 < 0.001 1.546 (1.289–1.855)

Diabetes 0.885 0.102 75.776 < 0.001 2.423 (1.985–2.957)

HDL −0.046 0.004 172.778 < 0.001 0.955 (0.948–0.961)

Uric Acid 0.256 0.032 63.325 < 0.001 1.291 (1.212–1.375)

　 　 Note. NAFLD:  non-alcoholic  fatty  liver  disease,  SE:  standard  error, OR:  Odds  ratios, CI:  confidence
intervals, BMI: Body Mass Index, HDL: High-density lipoprotein.

 

Table 3. Weighted ORs and 95% CIs for NAFLD according to dietary retinol intake quartile (μg /1,000 kcal per
day) using the univariate logistic regression model

Variables Crude OR (95% CI) P-trend Model 1 OR (95% CI) P-trend Model 2 OR (95% CI) P-trend
Total dietary retinol intake
(RAEs, μg/1,000 kcal per day) 0.005 0.001 0.176

< 190.54 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

190.54–284.02 1.11 (0.89–1.38) 1.02 (0.81–1.28) 1.10 (0.80–1.51)

284.02–422.22 1.12 (0.94–1.34) 1.01 (0.82–1.25) 1.03 (0.79–1.34)

≥ 422.22 0.79 (0.66–0.95)* 0.70 (0.57–0.87)** 0.86 (0.65–1.15)
Animal-derived dietary retinol
intake (RAEs, μg/1,000 kcal per day) 0.339 0.853 0.559

< 59.37 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

59.37–105.57 1.04 (0.83–1.29) 0.97 (0.78–1.19) 1.03 (0.80–1.33)

105.57–165.14 1.33 (1.07–1.67)* 1.25 (1.00–1.56)* 1.21 (0.90–1.61)

≥ 165.14 1.07 (0.85–1.36) 0.98 (0.76–1.26) 0.90 (0.63–1.26)
Plant-derived dietary retinol intake
(RAEs, μg/1,000 kcal per day) < 0.001 < 0.001 0.042

< 70.22 1.00 (ref.) 1.00 (ref.) 1.00 (ref.)

70.22–135.01 0.89 (0.73–1.09) 0.89 (0.72–1.10) 0.95 (0.72–1.27)

135.01–253.74 0.84 (0.67–1.05) 0.81 (0.64–1.04) 0.91 (0.67–1.24)

≥ 253.74 0.64 (0.50–0.82)** 0.60 (0.46–0.79)** 0.75 (0.57–0.99)*

　　Note. Model  1  is  adjusted  for  sex  and  age.  Model  2  was  adjusted  for  sex,  age,  race,  education  level,
smoking status, physical activity, income level, hypertension, diabetes, BMI, LDL, UA, and TC levels. The lowest
dietary  retinol  intake  quartile  was  used  as  the  reference  group.  The  results  are  survey-weighted. *P < 0.05,
**P < 0.01. Tests for trends based on variables containing median values for each quartile. NAFLD: non-alcoholic
fatty liver disease, OR: Odds ratios, CI: confidence intervals, RAEs: retinol activity equivalents.
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nonlinearity in some situations. Nevertheless, the P-
value for  the trend computed from the models  was
included  in  our  analyses,  which  included  dietary
retinol  as  a  reference  for  continuous  exposure.  In
univariate logistic  regression models,  we found that
the ORs (95% CIs)  of  NAFLD for  the highest  quartile
of  plant-derived  dietary  retinol  intake  (OR =  0.75,
95% CI: 0.57–0.99)  were  inversely  associated  with
NAFLD risk compared to the lowest quartile of intake
by adjusting for confounding factors such as sex, age,
race,  education  level,  smoking  status,  recreational
activities, income level, hypertension, diabetes, BMI,
LDL, UA and TC (model 2). 

Prediction Models

An  ANN  model  was  established  based  on  the
NAFLD  risk  predictors  obtained  from  the  logistic
regression analysis.  The input  variables  for  the ANN
model  included  age,  race,  BMI,  smoking  status,
recreational  activities,  hypertension,  diabetes,  HDL,

UA,  and  plant-derived  dietary  retinol  intake.  The
output  variable  is  a  binary  variable  indicating
whether  an  individual  has  NAFLD.  The  structure  of
the  BP  neural  network  consists  of  three  layers
(Figure 2). These parameters were selected based on
previous studies[36,37]. We set the training parameters
(e.g.,  learning  rate  and momentum) to  their  default
values.  The  Levenberg-Marquardt  algorithm  was
used  as  the  training  function.  The  neural  network
was trained for over 100 epochs. It is usually optimal
to  remove  20% of  the  input  units  and  50% of  the
hidden  units  because  this  simple  method  can
prevent  the  overfitting  of  neural  networks[60].  To
ensure  that  the  output  was  not  heavily  skewed
toward  the  dominant  class,  each  data  point  was
weighted  according  to  its  outcome  ratio.  The  ANN
model  corresponding  to  the  prediction  variable,
which  was  the  probability  of  having  NAFLD,  had  10
neurons  in  the  input  layer,  seven  neurons  in  the
hidden layer, and one neuron in the output layer. 
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Physical

Hypertension

Smoking

Input layer

n = 10
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n = 7

Output layer

n = 1

NAFLD

Plant-derived
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Figure 2. Graphic representation of the basic architecture of artificial neural network (ANN) model used
in the study for predictors analyzed for NALFD risk in training set. NAFLD: non-alcoholic fatty liver disease,
HDL: high-density lipoprotein, UA: uric acid, BMI: Body Mass Index.
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Discriminatory Ability of Models

Figure  3 shows  the  areas  under  the  ROC  curves
for  the  training  and  validation  sets  of  the  ANN
model.  The  area  under  the  receiver  operating
characteristic  curve  (AUC)  was  0.874  and  0.883  for
the  training  and  validation  sets,  respectively.
Therefore,  a  well-trained  ANN  model  with  high
accuracy  and large  AUC can successfully  predict  the
individual  risk  of  NAFLD.  The  cutoff  values  of  the
incidence  probability  of  NAFLD  were  0.388  in  the
training set and 0.427 in the validation set, indicating
that  NAFLD  will  occur  when  the  probability  of
incidence is greater than 0.388.

Table  4 shows  that  the  accuracy  indices  of  the
training  set  and  validation  set  are  0.807  and  0.800
for  the  ANN,  respectively.  The  Se,  Sp,  and  Youden
index  of  the  training  set  and  validation  set  were
0.804, 0.785, and 0.589 and 0.793, 0.829, and 0.622
for  the  ANN,  respectively.  The  AUC  of  the  ANN
model were 0.874 for the training set and 0.883 for
the  validation  set.  The  accuracy,  Se,  Sp,  Youden
index  and  AUC  values  were  0.798,  0.697,  0.856,
0.553 and 0.871 for  logistic  regression,  respectively.
So,  the  ability  of  the  ANN  to  predict  the  risk  of
NAFLD was  significantly  greater  than that  of  logistic

regression model. 

DISCUSSION

In  this  national  population  study  of  American
adults,  an ANN model was developed to predict the
risk  of  developing  NAFLD.  The  AUC  of  the  ANN
model  was  0.874  for  the  training  set  and  0.883  for
the  validation  set,  and  the  cutoff  values  for  the
incidence probability of NAFLD were 0.388 and 0.427
in  the  training  and  validation  sets,  respectively.  We
found  that  NAFLD  occurred  if  the  probability  of
incidence  was  >  0.388.  In  addition,  the  predictive
accuracy  of  NAFLD  can  be  improved  using  this
model.  As  systematic  screening  tools  with  great
potential  for  clinical  decision  support,  ANN  can
identify  high-risk  groups  for  NAFLD  according  to
dietary information and construct specific prediction
values  for  each  patient  based  on  their  relevant  risk
predictors[41].  Plant-derived  dietary  retinol  intake  is
an  important  predictor  of  NAFLD  and  is  inversely
related  to  the  risk  of  NAFLD.  To  the  best  of  our
knowledge, this is  the first  study to demonstrate an
ANN  model  combined  with  dietary  retinol  intake
from different sources to predict the risk of NAFLD.
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Figure 3. The  receiver  operating  characteristic  (ROC)  curves  obtained  from the  artificial  neural  network
(ANN) model in training and test sets. AUC: area under the curve.

 

Table 4. The performance of artificial neural network (ANN) and logistic model

Indicator
ANN

Logistic regression
Training set (n = 4,609) Validation set (n = 2,004)

Accuracy 0.807 0.800 0.798

Sensitivity 0.804 0.793 0.697

Specificity 0.785 0.829 0.856

Yuden index 0.589 0.622 0.553

AUC (95% CI) 0.874 (0.864–0.884) 0.883 (0.868–0.898) 0.871 (0.861–0.881)

　　Note. ANN: artificial neural network, AUC: area under the curve.
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Several  studies  have  reported  contradictory
results  regarding  the  association  between  dietary
retinol  intake  and  the  risk  of  NAFLD.  A  population-
based study conducted in Iran indicated that dietary
retinol  consumption  could  lower  the  prevalence  of
NAFLD[9]. Vahid et al.[33] reported that dietary vitamin
A  intake  negatively  correlated  with  the  risk  of
NAFLD. Moreover, a cohort study involving 241 rural
Chinese  adults  reported  a  negative  association
between  dietary  retinol  intake  and  NAFLD  risk[34].
Conversely,  a  Korean  study  of  80  participants
showed that vitamin A intake was higher in patients
with  NAFLD  than  in  healthy  controls[32].  A  study
conducted  in  Italy  reported  similar  results[61].  These
divergent  results  may  be  attributed  to  the  lack  of
adjustment  for  potential  confounders  and
discrepancies  in  ethnic  backgrounds,  dietary
patterns, and study designs.

Provitamin A carotenoids are abundant in plant-
based foods. In this study, the consumption of plant-
derived dietary retinol (i.e., provitamin A carotenoids
such  as-carotene)  was  assessed  by  calculating  the
retinol  mainly  from  plant  foods  such  as  legumes,
beans,  fruits,  and  vegetables.  Studies  reporting  the
association  between  dietary  retinol  intake  from
different  sources  and  NAFLD  risk  are  scarce.  Our
results  showed  that  plant-derived  dietary  retinol
exerts  a  protective  effect  against  NAFLD.  Although
the  mechanism  underlying  the  association  between
plant-derived  dietary  retinol  intake  and  NAFLD  risk
remains  unclear,  several  possible  mechanisms  have
been  proposed.  The  higher  mobilization  of  β-
carotene  for  conversion  into  retinol  may  be
responsible  for  the  lower  intake  of  plant-derived
dietary  retinol  in  patients  with  NAFLD  than  in
healthy  subjects  in  the  present  study[62].  Another
possible  explanation  is  that  the  bioavailability  of
carotenoids is greatly affected by food substrate[63-65].
Experimental  studies  have  shown  that  carotenoids
can  reverse  steatosis,  inflammation,  and  fibrosis
progression  in  NASH,  attenuate  insulin  resistance,
and  prevent  steatohepatitis  by  reducing  the
activation of macrophages and Kupffer cells[66]. Anti-
inflammatory  and  antioxidant  properties  are  the
primary mechanisms of action of carotenoids, which
modulate intracellular signaling pathways that affect
gene  expression  and  protein  translation[67].  A
previous  study  has  indicated  that  the  antioxidant
properties of carotenoids may prevent liver damage
and  the  risk  of  developing  NAFLD  by  alleviating  the
injurious  effects  of  oxidative  stress  on
hepatocytes[68].  In  addition,  several  studies  have
shown  that  high-sensitivity  C-reactive  protein  (hs-

CRP)  and  inflammatory  cytokine  IL-6  and  TNF-α
levels  are  associated  with  NAFLD  risk,  and  are
deemed  biomarkers  of  inflammation  leading  to
endothelial  cell  damage[69,70].  Several  studies
demonstrated  that  carotenoids  and  their
metabolites  were  likely  to  modulate  adiponectin
expression[71,72].  In  terms  of  its  anti-inflammatory
properties,  adiponectin  can  effectively  fight
inflammation  by  inhibiting  nuclear  factor-kappa  B
(NFκB)  action  and  TNF-α  expression,  thereby
reducing the risk of NAFLD[73]. According to previous
studies,  the  exact  explanation  for  the  association
between  dietary  retinol  intake  and  risk  is  still
unclear.  Hence,  additional  studies  are  required  to
explore these underlying mechanisms. 

Limitations

This  study  has  some  limitations.  First,  a  causal
relationship  between  dietary  retinol  intake  and
NAFLD  could  not  be  established  due  to  the  cross-
sectional  design  of  this  study.  Second,  the
application of two 24-h dietary recall  datasets may
have led to recall bias. In this study, dietary retinol
intake  from  supplements  was  not  included  in  the
total  dietary  retinol  intake.  Therefore,  we  did  not
evaluate  the  relationship  between  dietary  retinol
intake  from  supplements  and  the  risk  of  NAFLD.
Third,  the  USFLI  has  superior  sensitivity  in
identifying  patients  with  NAFLD[10,47].  However,  the
USFLI cannot be used to classify NAFLD stages, and
the  correlation  between  dietary  retinol  intake  and
NAFLD  risk  remains  unclear.  Fourth,  the  possibility
of  residual  confusion caused by  other  confounding
factors cannot be excluded. Fifth, NAFLD status was
estimated  based  on  a  previously  validated  index
rather than a clinical diagnosis. Finally, ANN may be
less  practical  for  clinical  applications  because  it  is
more  complex  than  traditional  statistical
models[36,37] and  requires  greater  statistical
expertise. 

CONCLUSION

Under  the  general  trend  of  an  increasing  global
prevalence rate of NAFLD, the US has become one of
the  countries  with  a  high  prevalence.  Our  study
showed  that  plant-derived  dietary  retinol  intake
impacts NAFLD incidence in the US adult population.
The  ANN  model,  combined  with  plant-derived
dietary  retinol  intake,  could  be  applied  to  predict
NAFLD  risk,  and  predictive  accuracy  could  be
improved  using  the  model.  Additionally,  NAFLD
occurs  when  the  probability  of  its  incidence  is
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greater  than 0.388.  These findings  have a  reference
value for predicting the risk of NAFLD using an ANN
model  combined  with  plant-derived  dietary  retinol
intake. 
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