Catalytic Metalloporphyrin Protects Against Paraquat Neurotoxicity in vivo

PING CHEN#, ZHEN CHEN³, ANG LI#, XIAO-CHU LOU#, XIAO-KANG WU+, CHUN-JUN ZHAO#, SHI-LONG WANG³, AND LI-PING LIANG#,1

#School of Life Science and Technology, Tongji University, Shanghai 200092, China; ªDepartment of Brain Surgery, Shanghai Tenth People’s Hospital, Tongji University, Shanghai 200072, China

Objective To examine the neuroprotective effects of a novel manganese porphyrin, manganese (III) meso-tetrakis(N,N′-diethylimidazolium-2-yl) porphyrin (MnTDM), in the mouse model of Parkinson’s disease (PD) induced by paraquat (PQ).

Methods Male C57BL/6 mice were subcutaneously injected with either saline or PQ at 2-day intervals for a total of 10 doses. MnTDM was subcutaneously injected with the PQ 2 h before treatment. Performance on the pole and swim test were measured 7 days after the last injection and animals were sacrificed one day later. Levels of dopamine (DA) and its metabolites in the striatum were measured by high-performance liquid chromatography with an electrochemical detector (HPLC-ECD).

Results Pretreatment with MnTDM significantly attenuated PQ-impaired behavioral performance, depleted dopamine content in striata, increased MDA, and dopaminergic neuron loss in the substantia nigra. Conclusions Oxidative stress plays an important role in PQ-induced neurotoxicity which can be potentially prevented by manganese porphyrin. These findings also propose a possible therapeutic strategy for neurodegenerative disorders associated with oxidative stress such as PD.

Key words: Parkinson’s disease; Paraquat; Dopamine transporter; Superoxide dismutase mimetics; Neuroprotection

REFERENCES


0895-3988/2008
CN 11-2816/Q
Copyright © 2008 by China CDC
production in kainate-induced hippocampal damage. 

(Received April 26, 2007 Accepted January 28, 2008)