Experimental Study of Cell Migration and Functional Differentiation of Transplanted Neural Stem Cells Co-labeled with Superparamagnetic Iron Oxide and Brdu in an Ischemic Rat Model

WEN-ZHEN ZHU*, XIANG LI*, JIAN-PIN QI*, ZHOU-PING TANG#, WEI WANG#, LI WEI$, AND HAO LEI$

*Department of Radiology; #Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; $State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics (MRAMP) of Wuhan Institute of Physics and Mathematics (WIPM) of the Chinese Academy of Sciences (CAS), Wuhan 430030, Hubei, China

Objective To explore the migration of transplanted neural stem cells co-labeled with superparamagnetic iron oxide (SPIO) and bromodeoxyuridine (Brdu) using the 4.7T MR system and to study the cell differentiation with immuno-histochemical method in ischemic rats. Methods Rat neural stem cells (NSCs) co-labelled with SPIO mediated by poly-L-lysine and bromodeoxyuridine (BrdU) were transplanted into the unaffected side of rat brain with middle cerebral artery occlusion (MCAO). At weeks 1, 2, 3, 4, 5, and 6 after MCAO, migration of the labelled cells was monitored by MRI. At week 6, the rats were killed and their brain tissue was cut according to the migration site of transplanted cells indicated by MRI and subjected to Prussian blue staining and immunohistochemical staining to observe the migration and differentiation of the transplanted NSCs. Results Three weeks after transplantation, the linear hypointensity area derived from the migration of labelled NSCs was observed by MRI in the corpus callosum adjacent to the injection site. Six weeks after the transplantation, the linear hypointensity area was moved toward the midline along the corpus callosum. MRI findings were confirmed by Prussian blue staining and immunohistochemical staining of the specimen at week 6 after the transplantation. Fluorescence co-labelled immunohistochemical methods demonstrated that the transplanted NSCs could differentiate into astrocytes and neurons. Conclusion MRI can monitor the migration of SPIO-labelled NSCs after transplantation in a dynamical and non-invasive manner. NSCs transplanted into ischemic rats can differentiate into astrocytes and neurons during the process of migration.

Key words: Stem cell transplantation; Magnetic resonance imaging; Staining and Labelling; Cell migration; Cell differentiation

REFERENCES

4. Ittrich H, Lange C, Dahmke H et al. (2005). Labeling of mesenchymal stem cells with different superparamagnetic particles of iron oxide and detectability with MRI at 3T. Rofo 177(8), 1151-1163.

(Received July 12, 2008 Accepted October 4, 2008)