[1] GINA Executive and Science Committee. Global strategy for asthma management and prevention[R/OL]. (Updated 2015). Available from: http://www.ginasthma.org[2015-01-01].
[2] Bai J, Zhao J, Shen KL, et al. Current trends of the prevalence of childhood asthma in three Chinese cities:a multicenter epidemiological survey. Biomed Environ Sci, 2010; 23, 453-7. doi:  10.1016/S0895-3988(11)60007-X
[3] Simpson JL, Scott R, Boyle MJ, et al. Inflammatory subtypes in asthma:assessment and identification using induced sputum. Respirology, 2006; 11, 54-61. doi:  10.1111/res.2006.11.issue-1
[4] Sun YC, Chu HW. Do neutrophils actively participate in airway inflammation and remodeling in asthma? Chin Med J, 2004; 117, 1739-42. http://www.cnki.com.cn/Article/CJFDTotal-ZHSS200411026.htm
[5] Chung KF. Neutrophilic asthma:a distinct target for treatment? Lancet Respir Med, 2016; 4, 765-7. doi:  10.1016/S2213-2600(16)30232-6
[6] Pite H, Morais-Almeida M, Rocha SM. Metabolomics in asthma:where do we stand? Curr Opin Pulm Med, 2018; 24, 94-103. doi:  10.1097/MCP.0000000000000437
[7] Luxon BA. Metabolomics in asthma. Adv Exp Med Biol, 2014; 795, 207-20. doi:  10.1007/978-1-4614-8603-9
[8] Ackerman SJ, Park GY, Christman JW, et al. Polyunsaturated lysophosphatidic acid as a potential asthma biomarker. Biomark Med, 2016; 10, 123-35. doi:  10.2217/bmm.15.93
[9] Chang C, Guo ZG, He B, et al. Metabolic alterations in the sera of Chinese patients with mild persistent asthma:a GC-MS-based metabolomic analysis. Acta Pharmacol Sin, 2015; 36, 1356-66. doi:  10.1038/aps.2015.102
[10] Cao WL, Gai XY, Yao WZ. Safety of sputum induction in patients with severe persistent asthma. Chin J Respir Crit Care Med, 2006; 5, 93-100. http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGHW200602006.htm
[11] Chong J, Soufan O, Li C, et al. MetaboAnalyst 4.0:towards more transparent and integrative metabolomic analysis. Nucleic Acids Res, 2018; 46, W486-94. doi:  10.1093/nar/gky310
[12] Carr TF, Zeki AA, Kraft M. Eosinophilic and non-eosinophilic asthma. Am J Respir Crit Care Med, 2018; 197, 22-37. doi:  10.1164/rccm.201611-2232PP
[13] Amaral AF. Metabolomics of asthma. J Allergy Clin Immunol, 2014; 133, 1497-9. e1. doi:  10.1016/j.jaci.2014.02.010
[14] Reinke SN, Gallart-Ayala H, Gomez C, et al. Metabolomic analysis identifies different metabotypes of asthma severity. Eur Respir J, 2017; 49, pii:1601740. doi:  10.1183/13993003.01740-2016
[15] Ho WE, Xu YJ, Xu F, et al. Metabolomics reveals altered metabolic pathways in experimental asthma. Am J Respir Cell Mol Biol, 2013; 48, 204-11. doi:  10.1165/rcmb.2012-0246OC
[16] Kelly RS, Dahlin A, McGeachie MJ, et al. Asthma metabolomics and the potential for integrative omics in research and the clinic. Chest, 2017; 151, 262-77. doi:  10.1016/j.chest.2016.10.008
[17] Villasenor A, Rosace D, Obeso D, et al. Allergic asthma:an overview of metabolomic strategies leading to the identification of biomarkers in the field. Clin Exp Allergy, 2017; 47, 442-56. doi:  10.1111/cea.2017.47.issue-4
[18] Makide K, Uwamizu A, Shinjo Y, et al. Novel lysophosphoplipid receptors:their structure and function. J Lipid Res, 2014; 55, 1986-95. doi:  10.1194/jlr.R046920
[19] Hoeben A, Landuyt B, Highley MS, et al. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev, 2004; 56, 549-80. doi:  10.1124/pr.56.4.3
[20] Lee SY, Lee HY, Kim SD, et al. Lysophosphatidylglycerol stimulates chemotactic migration and tube formation in human umbilical vein endothelial cells. Biochem Biophys Res Commun, 2007; 363, 490-4. doi:  10.1016/j.bbrc.2007.08.194
[21] Shim JW, Jo SH, Kim SD, et al. Lysophosphatidylglycerol inhibits formyl peptide receptorlike-1-stimulated chemotactic migration and IL-1beta production from human phagocytes. Exp Mol Med, 2009; 41, 584-91. doi:  10.3858/emm.2009.41.8.064
[22] Chen L, Chen J, Xie CM, et al. Maternal disononylphthalate exposure activates allergic airway inflammation via stimulating the phosphoinositide 3-kinase/Akt pathway in rat pups. Biomed Environ Sci, 2015; 3, 190-8. http://europepmc.org/abstract/med/25800443
[23] Jo SH, Kim SD, Kim JM, et al. Lysophosphatidylglycerol stimulates chemotactic migration in human natural killer cells. Biochem Biophys Res Commun, 2008; 372, 147-51. doi:  10.1016/j.bbrc.2008.05.004
[24] Altman MC, Whalen E, Togias A, et al. Allergen-induced activation of natural killer cells represents an early-life immune response in the development of allergic asthma. J Allergy Clin Immunol, 2018; 142, 1856-66. doi:  10.1016/j.jaci.2018.02.019
[25] Gorska MM. Natural killer cells in asthma. Curr Opin Allergy Clin Immunol, 2017; 17, 50-4. doi:  10.1097/ACI.0000000000000327
[26] Mathias CB. Natural killer cells in the development of asthma. Curr Allergy Asthma Rep, 2015; 15, 500. doi:  10.1007/s11882-014-0500-2
[27] Kaiko GE, Phipps S, Angkasekwinai P, et al. NK cell deficiency predisposes to viral-induced Th2-type allergic inflammation via epithelial-derived IL-25. J Immunol, 2010; 185, 4681-90. doi:  10.4049/jimmunol.1001758
[28] Shim JU, Koh YI. Increased Th2-like invariant natural killer T cells in peripheral blood from patients with asthma. Allergy Asthma Immunol Res, 2014; 6, 444-8. doi:  10.4168/aair.2014.6.5.444
[29] Walker C, Checkel J, Cammisuli S, et al. IL-5 production by NK cells contributes to eosinophil infiltration in a mouse model of allergic inflammation. J Immunol, 1998; 161, 1962-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f0a3b8af159a8e572c8875974257751
[30] Park KS, Kim MK, Im DS, et al. Effect of lysophosphatidylglycerol on several signaling molecules in OVCAR-3 human ovarian cancer cells:involvement of pertussis toxin-sensitive G-protein coupled receptor. Biochem Pharmacol, 2007; 73, 675-81. doi:  10.1016/j.bcp.2006.11.010
[31] Zhang Y, Zhang JD, Zhu MQ, et al. Effect of lysophosphatidylglycerol on intracellular free Ca2+ concentration in A10 vascular smooth muscle cells. Can J Physiol Pharmacol, 2017; 95, 1283-8. doi:  10.1139/cjpp-2017-0127
[32] Nagaleekar VK, Diehl SA, Juncadella I, et al. IP3 receptor-mediated Ca2+ release in naive CD4 T cells dictates their cytokine program. J Immunol, 2008; 181, 8315-22. doi:  10.4049/jimmunol.181.12.8315
[33] Chesné J, Braza F, Chadeuf G, et al. Prime role of IL-17A in neutrophilia and airway smooth muscle contraction in a house dust mite-induced allergic asthma model. J Allergy Clin Immunol, 2015; 135, 1643-1643. e3. doi:  10.1016/j.jaci.2014.12.1872
[34] Pelaia G, Vatrella A, Busceti MT, et al. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma. Mediators Inflamm, 2015; 2015, 879783. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000004221404
[35] Li L, Chen K, Xiang Y, et al. New development in studies of formyl-peptide receptors, critical roles in host defense. J Leukoc Biol, 2016; 99, 425-35. doi:  10.1189/jlb.2RI0815-354RR
[36] Kostikas K, Brindicci C, Patalano F. Blood eosinophils as biomarkers to drive treatment choices in asthma and COPD. Curr Drug Targets, 2018; 19, 1882-96. doi:  10.2174/1389450119666180212120012
[37] Adcock IM, Mumby SE. Neutrophilic asthma. Arch Bronconeumol, 2018; 54, 187-8. http://d.old.wanfangdata.com.cn/Periodical/zghxywzjhzz201104002