[1] Matsuda M, Shimomura I. Increased oxidative stress in obesity:implications for metabolic syndrome, diabetes, hypertension, dyslipidemia, atherosclerosis, and cancer. Obes Res Clin Pract, 2013; 7, e330-41. doi:  10.1016/j.orcp.2013.05.004
[2] Qin N, Chen Y, Jin MN, et al. Anti-obesity and anti-diabetic effects of flavonoid derivative (Fla-CN) via microRNA in high fat diet induced obesity mice. Eur J Pharm Sci, 2016; 82, 52-63. doi:  10.1016/j.ejps.2015.11.013
[3] Xiao H, Xie G, Wang J, et al. Chicoric acid prevents obesity by attenuating hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed mice. Food Res Int, 2013; 54, 345-53. doi:  10.1016/j.foodres.2013.07.033
[4] Masharani UB, Maddux BA, Li X, et al. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle. PLoS One, 2011; 6, e19878. doi:  10.1371/journal.pone.0019878
[5] Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology, 2007; 132, 2169-80. doi:  10.1053/j.gastro.2007.03.059
[6] Zheng JS, Arnett DK, Parnell LD, et al. Genetic variants at PSMD3 interact with dietary fat and carbohydrate to modulate insulin resistance. J Nutr, 2013; 143, 354-61. doi:  10.3945/jn.112.168401
[7] Lv Q, Si M, Yan Y, et al. Effects of phenolic-rich litchi (Litchi chinensis Sonn.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods, 2014; 7, 621-9. doi:  10.1016/j.jff.2013.12.023
[8] Jin MN, Shi GR, Tang SA, et al. Flavonoids from Tetrastigma obtectum enhancing glucose consumption in insulin-resistance HepG2 cells via activating AMPK. Fitoterapia, 2013; 90, 240-6. doi:  10.1016/j.fitote.2013.07.024
[9] Yin J, Hu R, Chen M, et al. Effects of berberine on glucose metabolism in vitro. Metabolism, 2002; 51, 1439-43. doi:  10.1053/meta.2002.34715
[10] Zhao H, Dong J, Lu J, et al. Effects of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in barley (Hordeum vulgare L). J Agric Food Chem, 2006; 54, 7277-86. doi:  10.1021/jf061087w
[11] Quinde-Axtell Z, Baik BK. Phenolic compounds of barley grain and their implication in food product discoloration. J Agric Food Chem, 2006; 54, 9978-84. doi:  10.1021/jf060974w
[12] Hole AS, Rud I, Grimmer S, et al. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus, Lactobacillus johnsonii, and Lactobacillus reuteri. J Agric Food Chem, 2012; 60, 6369-75. doi:  10.1021/jf300410h
[13] Wang T, He F, Chen G. Improving bioaccessibility and bioavailability of phenolic compounds in cereal grains through processing technologies:A concise review. J Funct Foods, 2014; 7, 101-11. doi:  10.1016/j.jff.2014.01.033
[14] Del Rio D, Rodriguez-Mateos A, Spencer JP, et al. Dietary (poly) phenolics in human health:structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sign, 2013; 18, 1818-92. doi:  10.1089/ars.2012.4581
[15] Begum A, Goswami A, Chowdhury P. A comparative study on free and bound phenolic acid content and their antioxidant activity in bran of rice (Oryza sativa L.) cultivars of Eastern Himalayan range. Int J Food Sci Technol, 2015; 50, 2529-36. doi:  10.1111/ijfs.12920
[16] Seo CR, Yi B, Oh S, et al. Aqueous extracts of hulled barley containing coumaric acid and ferulic acid inhibit adipogenesis in vitro and obesity in vivo. J Funct Foods, 2015; 12, 208-18. doi:  10.1016/j.jff.2014.11.022
[17] Cannell IG, Kong YW, Bushell M. How do microRNAs regulate gene expression? Biochem Soc Trans, 2008; 36, 1224-31. doi:  10.1042/BST0361224
[18] Zhao E, Keller MP, Rabaglia ME, et al. Obesity and genetics regulate microRNAs in islets, liver, and adipose of diabetic mice, Mamm. Genome, 2009; 20, 476-85. http://cn.bing.com/academic/profile?id=ceaee723972b84e43c4fafd225a514a5&encoded=0&v=paper_preview&mkt=zh-cn
[19] Fu T, Choi, SE, Kim DH, et al. Aberrantly elevated microRNA-34a in obesity attenuates hepatic responses to FGF19 by targeting a membrane coreceptor β-Klotho. Proc Natl Acad Sci, 2012; 109, 16137-42. doi:  10.1073/pnas.1205951109
[20] Esau C, Davis S, Murray SF, et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell metabolism, 2006; 3, 87-98. doi:  10.1016/j.cmet.2006.01.005
[21] Xiao J, Bei Y, Liu J, et al. miR-212 downregulation contributes to the protective effect of exercise against non-alcoholic fatty liver via targeting FGF-21. J Cell Mol Med, 2016; 20, 204-16. doi:  10.1111/jcmm.12733
[22] Zhang JY, Xiao X, Dong Y, et al. Dietary supplementation with Lactobacillus plantarum dy-1 fermented barley suppresses body weight gain in high-fat diet-induced obese rats. J Sci Food Agric, 2016; 96, 4907-17. doi:  10.1002/jsfa.2016.96.issue-15
[23] Cooke AA, Connaughton RM, Lyons CL, et al. Fatty acids and chronic low grade inflammation associated with obesity and the metabolic syndrome. Eur J Pharmacol, 2016; 785, 207-14. doi:  10.1016/j.ejphar.2016.04.021
[24] Rathore S, Salmerón I, Pandiella SS. Production of potentially probiotic beverages using single and mixed cereal substrates fermented with lactic acid bacteria cultures. Food Microbiol, 2012; 30, 239-44. doi:  10.1016/j.fm.2011.09.001
[25] Giriwono PE, Hashimoto T, Ohsaki Y, et al. Extract of fermented barley attenuates chronic alcohol induced liver damage by increasing antioxidative activities. Food Res Int, 2010; 43, 118-24. doi:  10.1016/j.foodres.2009.09.008
[26] ÐordevicxTM, Šiler-MarinkovicxSS, Dimitrijevicx-Brankovic SI. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals. Food Chem, 2010; 119, 957-63. doi:  10.1016/j.foodchem.2009.07.049
[27] Tang Z, Xia N, Yuan X, et al. PRDX1 is involved in palmitate induced insulin resistance via regulating the activity of p38MAPK in HepG2 cells. Biochem Biophys Res Commun, 2015; 465, 670-7. doi:  10.1016/j.bbrc.2015.08.008
[28] Van Beek M, Oravecz-Wilson KI, Delekta PC, et al. Lucas1, Bcl10 links saturated fat overnutrition with hepatocellular NF-κB activation and insulin resistance. Cell reports, 2012; 1, 444-52. doi:  10.1016/j.celrep.2012.04.006
[29] Esser N, Legrand-Poels S, Piette J, et al. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pr, 2014; 105, 141-50. doi:  10.1016/j.diabres.2014.04.006
[30] Xie C, Kang J, Li Z, et al. The açaí flavonoid velutin is a potent anti-inflammatory agent:blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem, 2012; 23, 1184-91. doi:  10.1016/j.jnutbio.2011.06.013
[31] Feng Y, Carroll AR, Addepalli R, et al. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors. J Nat Prod, 2007; 70, 1790-2. doi:  10.1021/np070225o
[32] Chang WC, Wu JSB, Chen CW, et al. Protective effect of vanillic acid against hyperinsulinemia, hyperglycemia and hyperlipidemia via alleviating hepatic insulin resistance and inflammation in High-Fat Diet (HFD)-fed rats. Nutrients, 2015; 7, 9946-59. doi:  10.3390/nu7125514
[33] Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science, 2013; 339, 218-22. doi:  10.1126/science.1227568
[34] Nakatani Y, Kaneto H, Kawamori D, et al. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem, 2004; 279, 45803-9. doi:  10.1074/jbc.M406963200
[35] Shehzad A, Ha T, Subhan F, et al. New mechanisms and the anti-inflammatory role of curcumin in obesity and obesity-related metabolic diseases. Eur J Nutr, 2011; 50, 151-61. doi:  10.1007/s00394-011-0188-1
[36] Wang YY, Li H, Wang XH, et al. Probucol inhibits MMP-9 expression through regulating miR-497 in HUVECs and apoE knockout mice, Thromb Res, 2016; 140, 51-8. doi:  10.1016/j.thromres.2016.02.012
[37] Nesca V, Guay C, Jacovetti C, et al. Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia, 2013; 56, 2203-12. doi:  10.1007/s00125-013-2993-y
[38] Emanuelli B, Eberlé D, Suzuki R, et al. Overexpression of the dual-specificity phosphatase MKP-4/DUSP-9 protects against stress-induced insulin resistance. Proc Natl Acad Sc USA, 2008; 105, 3545-50. doi:  10.1073/pnas.0712275105
[39] Wu F, Lv T, Chen G, et al. Epigenetic silencing of DUSP9 induces the proliferation of human gastric cancer by activating JNK signaling. Oncol Rep, 2015; 34, 121-8. doi:  10.3892/or.2015.3998
[40] Yang Y, Ouyang X, Xiang J, et al. Effects of DUSP9 on cholesterol and gluconeogenesis in high-fat diet induced insulin resistance C57 mice. Chongqing Med J, 2013; 42, 1561-3.